Published online by Cambridge University Press: 16 March 2015
Microtubules of cardiac myocytes depolymerize after a hypoxic insult or treatment with colchicine. However, little attention has been paid to quantifying changes in microtubule distribution when using fluorescent images. We converted fluorescence images of labeled microtubules in H9C2 cardiac myocytes to grayscale images, then filtered the images to remove any noise, and used grayscale histograms to quantify features of the images. The results show that parameters such as the mean, variance, skewness, kurtosis, energy, and entropy can be used to quantitatively describe the distribution of microtubules in cells. Quantitative characteristics of microtubule distribution were similar after culturing cells under hypoxic conditions or after treatment with colchicine. These results parallel those described for neonatal rat cardiac myocytes following ischemia and hypoxia. In addition, we provide a method for internal segmentation of the cells, which revealed that microtubular depolymerization was more evident near the cell membrane following hypoxia or colchicine treatment.