Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T03:53:11.338Z Has data issue: false hasContentIssue false

LIFE HISTORY TRAITS OF AQUATIC ARTHROPODS IN SPRINGS

Published online by Cambridge University Press:  31 May 2012

D. Dudley Williams*
Affiliation:
Division of Life Sciences, Scarborough Campus, University of Toronto, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4
Get access

Abstract

Springs are especially useful for examining questions related to life history because they are widespread, and because they include not only the most predictable of freshwater habitats but also the most adverse (hot springs). Permanent springs tend to be stable environments, particularly in terms of temperature, discharge, and substrate. Extreme habitats such as hot springs can be ideal for studying biotic responses to environmental features because they vary little in certain factors and so do not conceal the mechanisms at work. This paper reviews the known life history and associated community traits of spring arthropods in terms of broad categories of selection forces thought to be acting in these habitats, and also examines the biotic consequences of stable environmental temperature. The data, although limited, show most support for the deterministic view of life history evolution in that traits of cold and hot permanent spring faunas tend to conform to those of K- and A-selected species, respectively. Nonconformities exist however, and data are totally lacking for springs that flow intermittently. A model continuum of spring types from the stable to the unstable and from the benign to the adverse is proposed which predicts the biological properties of communities living in little-studied spring types. The stable and/or adverse temperature regimens of springs are thought to impinge on many aspects of the biology of their faunas but most relationships (e.g. physiological, phenological) are based on data that are correlative, circumstantial, or laboratory based. Manipulative field tests are advocated to establish definite causative links. Wide scope exists for further research on the life history and community traits of spring arthropods.

Résumé

Les sources sont particulièrement utiles pour étudier les questions reliées au cycle vital parce qu'elles sont répandues et qu'elles représentent non seulement les habitats d'eau douce les plus prévisibles, mais aussi les plus hostiles (les sources chaudes). Les sources permanentes ont tendance d'être des environnements stables, surtout en termes de température, décharge et substrat. Les habitats extrêmes tels que les sources chaudes peuvent être idéals pour étudier les réponses biotiques aux caractéristiques environnementales, parce qu'ils varient peu selon certains facteurs et ainsi ne cachent pas les mécanismes qui agissent. Le présent article passe en revue les caractéristiques des cycles vitaux et des associations communautaires connues chez les arthropodes des sources en termes des catégories générales des forces de sélection que l'on pense être actives dans ces habitats. Les conséquences biotiques d'une température environnementale stable sont aussi examinées. Les données, bien que limitées, supportent pour la plupart la théorie déterministe de l'évolution des caractéristiques du cycle vital selon que celles des faunes permanentes des sources froides et chaudes ont tendance à se conformer à celles des espèces K- et A-sélectionnées, respectivement. Des exceptions existent, cependant, et les données nous manquent en ce qui concerne les sources qui coulent par intermittence. Un modèle continuum des sortes de sources, allant des stables aux instables et des bénignes aux hostiles, a été proposé. Le modèle prédit les propriétés biologiques des communautés vivant dans les sortes de sources peu étudiées. On croit que les régimes de température stable ou hostile, ou les deux, influencent plusieurs aspects de la biologie de leurs faunes, mais la plupart des relations (p. ex. : physiologiques, phénologiques) sont basées sur des données qui sont corrélatives, circonstancielles ou provenant d'études faites en laboratoire. Les études expérimentales de terrain sont recommandées pour établir les liens causatifs définis. Les possibilités pour la recherche future concernant les caractéristiques des cycles vitaux et les communautés d'arthropodes vivant dans les sources sont vastes.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, N.H., and Cummins, K.W.. 1979. Influences of diet on the life histories of aquatic insects. J. Fish. Res. Bd Can. 36: 335342.Google Scholar
Awachie, J.B.E. 1981. Running water ecology in Africa, pp. 339–366 in Lock, M. A., and Williams, D.D. (Eds.), Perspectives in Running Water Ecology. Plenum, New York, NY. 430 pp.Google Scholar
Baird, D.J., Linton, L.R., and Davies, R. W.. 1987. Life-history flexibility as a strategy for survival in a variable environment. Funct. Ecol. 1: 4548.Google Scholar
Barnby, M.A., and Resh, V.H.. 1988. Factors affecting the distribution of an endemic and a widespread species of brine fly (Diptera: Ephydridae) in a northern California thermal saline spring. Ann. ent. Soc. Am. 81: 437446.Google Scholar
Barton, D.R. 1980. Observations on the life histories and biology of Ephemeroptera and Plecoptera in north-eastern Alberta. Aquat. Insects 2: 97111.Google Scholar
Berg, K. 1951. Notes on some large Danish springs. Hydrobiologia 3: 7278.Google Scholar
Bohle, H.W. 1972. Die Temperaturabhängigkeit der Embryogenese und der embryonalen Diapause von Ephemerella ignata (Poda) (Insecta: Ephemeroptera). Oecologia 10: 253268.Google Scholar
Brittain, J.E. 1977. The effect of temperature on the egg incubation period of Taeniopteryx nebulosa (Plecoptera). Oikos 29: 302305.Google Scholar
Brittain, J.E. 1978. The Ephemeroptera of Over Heimdalsvatn. Holarct. Ecol. 1: 239254.Google Scholar
Brock, T.D., and Brock, M.L.. 1971. Microbial studies of thermal habitats of the Central Volcanic Region, North Island, New Zealand. N.Z. J. Mar. Freshwat. Res. 5: 233258.Google Scholar
Brust, R.A. 1967. Weight and development time of different stadia of mosquitoes reared at various constant temperatures. Can. Ent. 99: 986993.Google Scholar
Butler, M.G. 1984. Life histories of aquatic insects, pp. 24–55 in Resh, V.H., and Rosenberg, D.M. (Eds.), The Ecology of Aquatic Insects. Praeger Scientific, New York, NY. 625 pp.Google Scholar
Calow, P. 1978. Life Cycles: An Evolutionary Approach to the Physiology of Reproduction, Development and Aging. Chapman and Hall, London. 164 pp.Google Scholar
Carlsson, M., Nilsson, L.M., Svensson, B., Ulfstrand, S., and Wotton, R.S.. 1977. Lacustrine seston and other factors influencing the blackflies (Diptera: Simuliidae) inhabiting lake outlets in Swedish Lapland. Oikos 29: 229238.Google Scholar
Carter, C.E. 1980. The life cycle of Chironomus anthracinus in Lough Neagh. Holarct. Ecol. 3: 214217.Google Scholar
Clifford, H.F., and Boerger, H.. 1974. Fecundity of mayflies (Ephemeroptera), with special reference to mayflies of a brown-water stream of Alberta, Canada. Can. Ent. 106: 11111119.Google Scholar
Colbo, M.H.,, and Porter, G.N.. 1979. Effects of the food supply on the life history of Simuliidae (Diptera). Can. J. Zool. 57: 301306.Google Scholar
Collins, N.C. 1975. Population biology of a brine fly (Diptera: Ephydridae) in the presence of abundant algal food. Ecology 56: 11391148.Google Scholar
Collins, N.C., Mitchell, R., and Wiegert, R.G.. 1976. Functional analysis of a thermal spring ecosystem, with an evaluation of the role of consumers. Ecology 57: 12211232.Google Scholar
Corbet, P.S. 1957. The life-histories of two spring species of dragonfly (Odonata: Zygoptera). Entomologist's Gaz. 8: 7989.Google Scholar
Corbet, P.S. 1980. Biology of Odonata. A. Rev. Ent. 25: 189217.Google Scholar
Cummins, K.W. 1973. Trophic relations of aquatic insects. A. Rev. Ent. 18: 183206.Google Scholar
Danks, H.V. 1987. Insect Dormancy: An Ecological Perspective. Biol. Surv. Can. (Terr. Arthrop.), Ottawa. (Biol. Surv. Can. Monogr. Ser. 1.) 439 pp.Google Scholar
Danks, H.V., and Oliver, D.R.. 1972. Diel periodicities of emergence of some high arctic Chironomidae (Diptera). Can. Ent. 104: 903916.Google Scholar
Décamps, H. 1967. Écologie des Trichoptères de la vallée d'Aure (Hautes-Pyrénées). Annls Limnol. 3: 399577.Google Scholar
Dermott, R.M., Kalff, J., Leggett, W.C., and Spence, J.. 1977. Production of Chironomus, Procladius, and Chaoborus at different levels of phytoplankton biomass in Lake Memphremagog, Quebec–Vermont. J. Fish. Res. Bd Can. 34: 20012007.Google Scholar
Dittmar, H. 1955. Ein Sauerlandbach. Untersuchungen an einem Wiesen–Mittlegebirgsbach. Arch. Hydrobiol. 50: 305552.Google Scholar
Elliott, J.M. 1969. Life history and biology of Sericostoma personatum Spence (Trichoptera). Oikos 20: 110118.Google Scholar
Elliott, J.M. 1972. Effect of temperature on the time of hatching in Baetis rhodani (Ephemeroptera: Baetidae). Oecologia 9: 4751.Google Scholar
Elworthy, R.T. 1918. Mineral springs of Canada Part II. The chemical character of some Canadian mineral springs. Can. Dept. Mines, Mines Brch Bull. 20: 1173.Google Scholar
Fahy, E. 1973. Observations on the growth of Ephemeroptera in fluctuating and constant temperature conditions. Proc. R. Ir. Acad. (B) 73: 133149.Google Scholar
Flannagan, J.F. 1979. The burrowing mayflies of Lake Winnipeg, Manitoba, Canada, pp. 103–113 in Pasternak, K., and Sowa, R. (Eds.), Proceedings of the Second International Conference on Ephemeroptera. Panstwowe Wydawnietwa Nankowe, Warsaw, Poland. 312 pp.Google Scholar
Gallepp, G.W. 1977. Responses of caddisfly larvae (Brachycentrus sp.) to temperature, food availability and current velocity. Am. midl. Nat. 98: 5984.Google Scholar
Gislason, G.M., Halbach, U., and Flechtner, G.. 1991. Habitat and life histories of the Trichoptera in Thjorsarver, Central Highlands of Iceland. Fauna Norw. Ser. B. In press.Google Scholar
Gooch, J.L., and Glazier, D.S.. 1991. Temporal and spatial patterns in mid-Appalachian springs, pp. 29–49 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Grafius, E., and Anderson, N.H.. 1980. Population dynamics and the role of two species of Lepidostoma (Trichoptera: Lepidostomatidae) in an Oregon coniferous forest stream. Ecology 61: 808816.Google Scholar
Greenslade, P.J.M. 1972. Evolution in the staphylinid genus Priochurus (Coleoptera). Evolution 26: 203220.Google Scholar
Greenslade, P.J.M. 1983. Adversity selection and the habitat templet. Am. Nat. 122: 352365.Google Scholar
Grime, J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111: 11691194.Google Scholar
Harper, P.P. 1981. Ecology of streams at high latitudes, pp. 313–338 in Lock, M.A., and Williams, D.D. (Eds.), Perspectives in Running Water Ecology. Plenum, New York, NY. 430 pp.Google Scholar
Harper, P.P., and Hynes, H.B.N.. 1970. Diapause in the nymphs of Canadian winter stoneflies. Ecology 51: 925927.Google Scholar
Heiman, D.R., and Knight, A.W.. 1975. The influence of temperature on the bioenergetics of the carnivorous stonefly nymph, Acroneuria californica (Banks) (Plecoptera, Perlidae). Ecology 56: 105116.Google Scholar
Hildrew, A.G., and Townsend, C.R.. 1987. Organization in freshwater benthic communities, pp. 347372in Gee, J.H.R., and Giller, P.S. (Eds.), Organization of Communities Past and Present. 27th Symposium of the British Ecological Society; Aberystwyth 1986. Blackwell, Oxford.Google Scholar
Hilsenhoff, W.L., and Narf, R.P.. 1972. Plecoptera (stoneflies). pp. 8–12 in Hilsenhoff, W.L., Longridge, J.L., Narf, R.P., Tennessen, K.J., and Walton, C.P. (Eds.), Aquatic Insects of the Pine-Popple River, Wisconsin. Wis. Dept. Nat. Resour. Tech. Bull. 54. 76 pp.Google Scholar
Hosseinie, S.O. 1976. Effects of the amount of food on duration of stages, mortality rates, and size of individuals in Tropisternus lateralis nimbatus (Say) (Coleoptera: Hydrophilidae). Int. Revue ges. Hydrobiol. 61: 383388.Google Scholar
Howe, R.W. 1967. Temperature effects on embryonic development in insects. A. Rev. Ent. 12: 1542.Google Scholar
Humpesch, U.H. 1971. Zur. Faktorenanalyse des Schlupfrhythmus der Flugstadien von Baetis alpinus Pict. (Baetidae, Ephemeroptera). Oecologia 7: 328341.Google Scholar
Humpesch, U.H. 1978. Preliminary notes on the effect of temperature and light condition on the time of hatching in some Heptageniidae (Ephemeroptera). Verh. int. Verein. theor. angew. Limnol. 20: 26052611.Google Scholar
Humpesch, U.H. 1980. Effects of temperature on the hatching time of eggs of five Ecdyonurus spp. (Ephemeroptera) from Austrian streams and English streams, rivers and lakes. J. Anim. Ecol. 49: 317333.Google Scholar
Humpesch, U.H., and Elliott, J.M.. 1980. Effect of temperature on the hatching time of eggs of three Rhithrogena spp. (Ephemeroptera) from Austrian streams and an English stream and river. J. Anim. Ecol. 49: 643661.Google Scholar
Hynes, H.B.N. 1961. The invertebrate fauna of a Welsh mountain stream. Arch. Hydrobiol. 57: 344388.Google Scholar
Hynes, H.B.N. 1970. The Ecology of Running Waters. Liverpool University Press, Liverpool. 505 pp.Google Scholar
Hynes, H.B.N. 1976. Biology of Plecoptera. A. Rev. Ent. 21: 135153.Google Scholar
Hynes, H.B.N., and Hynes, M.E.. 1975. The life histories of many of the stoneflies (Plecoptera) of south-eastern mainland Australia. Aust. J. mar. freshwat. Res. 26: 113153.Google Scholar
Illies, J. 1952. Die Mölle. Faunistisch-ökologische Untersuchungen an einem Forellenbach in Lipper Bergland. Arch. Hydrobiol. 46: 424612.Google Scholar
Illies, J. 1969. Biogeography and ecology of Neotropical freshwater insects, especially those from running waters. pp. 685708in Fittkau, E.J. et al. (Eds.) Biogeography and Ecology in South America, Vol. 2. Junk, The Hague.Google Scholar
Istock, C.A. 1981. Natural selection and life history variation: Theory plus lessons from a mosquito, pp. 113–128 in Denno, R.F., and Dingle, H. (Eds.), Insect Life History Patterns: Habitat and Geographic Variation. Springer-Verlag, New York, NY. 225 pp.Google Scholar
Iversen, T.M. 1973. Life cycle and growth of Sericostoma personatum Spence (Trichoptera: Sericostomatidae) in a Danish spring. Ent. scand. 4: 323327.Google Scholar
Iversen, T.M. 1976. Life cycle and growth of Trichoptera in a Danish spring. Arch. Hydrobiol. 78: 482493.Google Scholar
Iversen, T.M. 1978. Life cycles and growth of three species of Plecoptera in a Danish spring. Ent. Meddr. 46: 5762.Google Scholar
Iversen, T.M. 1979. Laboratory energetics of larvae of Sericostoma personatum (Trichoptera). Holarct. Ecol. 2: 15.Google Scholar
Iversen, T.M. 1980. Densities and energetics of two streamliving larval populations of Sericostoma personatum (Trichoptera). Holarct. Ecol. 3: 6573.Google Scholar
Jónasson, P.M. 1972. Ecology and production of the profundal benthos in relation to phytoplankton in Lake Esrom. Oikos Suppl. 14: 1148.Google Scholar
Kavaliers, M. 1981. Rhythmic thermoregulation in a larval cranefly (Diptera: Tipulidae). Can. J. Zool. 59: 555558.Google Scholar
Khoo, S.G. 1964. Studies on the biology of Capnia bifrons (Newman) and notes on the diapause in the nymphs of this species. Gewass. Abwass. 34/5: 2330.Google Scholar
Khoo, S.G. 1968. Experimental studies on diapause in stoneflies. I. Nymphs of Capnia bifrons (Newman). Proc. R. ent. Soc. Lond. (A) 43: 4048.Google Scholar
Konstantinov, A.S. 1958. The effect of temperature on growth rate and development of chironomid larvae. Dokl. Acad. Nauk SSSR. Ser. Biol. 20: 506509.Google Scholar
Lacey, L.A., and Mulla, M.S.. 1979. Factors affecting feeding rates of black fly larvae. Mosquito News 39: 315319Google Scholar
Lechleitner, R.A., and Kondratieff, B.C.. 1983. The life history of Pteronarcys dorsata (Say) (Plecoptera: Pteronarcyidae) in southwestern Virginia. Can. J. Zool. 61: 19811985.Google Scholar
Lehmkuhl, D.M. 1974. Thermal regime alteration and vital environmental physiological signals in aquatic organisms. pp. 116–222 in Gibbons, J.W., and Sharitz, R.R. (Eds.), Thermal Ecology. Nat. Tech. Inf. Serv. Conf. 730505. U.S. Atom. Energ. Comm. 670 pp.Google Scholar
Lutz, P.E. 1968. Effects of temperature and photoperiod on larval development in Lestes eurinus (Odonata: Lestidae). Ecology 49: 637644.Google Scholar
MacArthur, R.H., and Wilson, E.O.. 1967. Theory of island biogeography. Princeton University Press, Princeton. 203 pp.Google Scholar
Mackey, A.P. 1977. Growth and development of larval Chironomidae. Oikos 28: 270275.Google Scholar
McCullough, D.A. 1975. The Bioenergetics of 3 Aquatic Insects determined by Radioisotope Analysis. Battelle Pacific Northwest Labs., B.N.W.L. 1928, special distribution VC-48. 225 pp.Google Scholar
Murphy, G.I. 1968. Patterns in life history and the environment. Am. Nat. 102: 390404.Google Scholar
Nebeker, A.V. 1971. Effect of water temperature on nymphal feeding rate, emergence, and adult longevity of the stonefly Pteronarcys dorsata. J. Kans. ent. Soc. 44: 2126.Google Scholar
Nebeker, A.V. 1973. Temperature requirements and life cycle of the midge Tanytarsus dissimilis (Diptera: Chironomidae). J. Kans. ent. Soc. 46: 160165.Google Scholar
Nielsen, A. 1942. Uber die Entwicklung und Biologie der Trichopteren. Arch. Hydrobiol. Suppl. 17: 255631.Google Scholar
Nielsen, A. 1951. Spring fauna and speciation. Verh. int. Verein. theor. angew. Limnol. 18: 15121520.Google Scholar
Norton, R.A., Williams, D.D., Hogg, I.D., and Palmer, S.C.. 1988. Biology of the oribatid mite Mucronothrusnasalis (Acari: Oribatida: Trhypochthoniidae) from a small coldwater springbrook in eastern Canada. Can. J. Zool. 66: 622629.Google Scholar
Odum, H.T. 1957. Trophic structure and productivity of Silver Springs. Ecol. Monogr. 27: 55112.Google Scholar
Parsons, P.A. 1983. The Evolutionary Biology of Colonizing Species. Cambridge University Press, London. 262 pp.Google Scholar
Pianka, E.R. 1970. On r- and K-selection. Am. Nat. 104: 592597.Google Scholar
Price, P.W. 1974. Strategies for egg production. Evolution 28: 7684.Google Scholar
Pritchard, G. 1976. Growth and development of larvae and adults of Tipula sacra Alexander (Insecta: Diptera) in a series of abandoned beaver ponds. Can. J. Zool. 54: 266284.Google Scholar
Pritchard, G. 1991. Insects in thermal springs, pp. 89–106 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Resh, V.H. 1976. Life histories of coexisting species of Ceraclea caddisflies (Trichoptera: Leptoceridae): The operation of independent functional units in a stream ecosystem. Can. Ent. 108: 13031318.Google Scholar
Ring, R.A. 1991. The insect fauna and some other characteristics of natural salt springs on Saltspring Island, British Columbia, pp. 51–61 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Rosenberg, D.M. (Ed.). 1979. Freshwater benthic invertebrate life histories: Current research and future needs. J. Fish. Res. Bd Can. 36: 289345.Google Scholar
Ross, D.H., and Merritt, R.W.. 1978. The larval instars and population dynamics of five species of black flies (Diptera: Simuliidae) and their responses to selected environmental factors. Can. J. Zool. 56: 16331642.Google Scholar
Schaffer, W.M. 1974. Optimal reproductive effort in fluctuating environments. Am. Nat. 108: 783790.Google Scholar
Scriber, J.M., and Slansky, F. Jr., 1981. The nutritional ecology of immature insects. A. Rev. Ent. 26: 183211.Google Scholar
Sibly, R.M., and Calow, P.. 1986. Physiological ecology of animals: An evolutionary approach. Blackwells Scientific Publications, Oxford. 179 pp.Google Scholar
Siegfried, C.A., and Knight, A. W.. 1976. Prey selection by a setipalpian stonefly nymph, Acroneuria (Calineura) californica Banks (Plecoptera: Perlidae). Ecology 57: 603608.Google Scholar
Snellen, R.K., and Stewart, K.W.. 1979. The life cycle of Perlesta placida (Plecoptera: Perlidae) in an intermittent stream in northern Texas, U.S.A. Ann. ent. Soc. Am. 72: 659666.Google Scholar
Söderström, O. 1988. Effects of temperature and food quality on life-history parameters in Parameletus chelifer and P. minor (Ephemeroptera): A laboratory study. Freshwat. Biol. 20: 295303.Google Scholar
Southwood, T.R.E. 1988. Tactics, strategies and templets. Oikos 52: 318.Google Scholar
Stark, J.D., Fordyce, R.E., and Winterbourn, M.J.. 1976. An ecological survey of the hot springs area, Hurunui River, Canterbury, New Zealand. Mauri Ora 4: 3552.Google Scholar
Stearns, S.C. 1976. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51: 347.Google Scholar
Sweeney, B.W. 1984. Factors influencing life-history patterns of aquatic insects, pp. 56–100 in Resh, V.H., and Rosenberg, D.N. (Eds.), The Ecology of Aquatic Insects. Praeger Scientific, New York, NY. 625 pp.Google Scholar
Sweeney, B.W., and Schnack, J.A.. 1977. Egg development, growth, and metabolism of Sigara alternata (Say) (Hemiptera: Corixidae) in fluctuating thermal environments. Ecology 58: 265277.Google Scholar
Sweeney, B.W., and Vannote, R.L.. 1981. Ephemerella mayflies of White Clay Creek: Bioenergetic and ecological relationships among six coexisting species. Ecology 62: 13531369.Google Scholar
Tallamy, D.W., and Denno, R.F.. 1981. Alternative life history patterns in risky environments: An example from lacebugs. pp. 129–147 in Denno, R.F., and Dingle, H. (Eds.), Insect Life History Patterns: Habitat and Geographic Variation. Springer-Verlag, New York, NY. 225 pp.Google Scholar
Teal, J.M. 1957. Community metabolism in a temperate cold spring. Ecol. Monogr. 27: 283302.Google Scholar
Thorup, J. 1974. Occurrence and size-distribution of Simuliidae (Diptera) in a Danish spring. Arch. Hydrobiol. 74: 316335.Google Scholar
Tilly, L.J. 1968. The structure and dynamics of Cone Spring. Ecol. Monogr. 38: 169197.Google Scholar
Towns, D.R. 1981. Life histories of benthic invertebrates in a kauri forest stream in northern New Zealand. Austr. J. mar. freshwat. Res. 32: 191211.Google Scholar
Travé, J. 1973. Les variations chaetotaxique dans quelques populations de Mucronothrus nasalis Willm. (oribate). Acarologia (Paris) 15: 521533.Google Scholar
Ulfstrand, S. 1968. Life cycles of benthic insects in Lapland streams (Ephemeroptera, Plecoptera, Trichoptera, Diptera Simuliidae). Oikos 19: 167190.Google Scholar
van Everdingen, R.O. 1991. Physical, chemical, and distributional aspects of Canadian springs, pp. 7–28 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Vannote, R.L., and Sweeney, B.W.. 1980. Geographic analysis of thermal equilibria: A conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am. Nat. 115: 667695.Google Scholar
Verdonschot, P.F.M., and Schot, J.A.. 1986. Macrofaunal community types in helocrene springs. Rijksinstituut voor natuurbeheer (Netherlands) Rept. pp. 85103.Google Scholar
Ward, J.V., and Stanford, J.A.. 1982. Thermal responses in the evolutionary ecology of aquatic insects. A. Rev. Ent. 27: 97117.Google Scholar
Wigglesworth, V.B. 1965. The Principles of Insect Physiology. Methuen, London. 544 pp.Google Scholar
Williams, D.D. 1987. The Ecology of Temporary Waters. Croom Helm, London. 205 pp.Google Scholar
Williams, D.D., and Hogg, I.D.. 1988. Ecology and production of invertebrates in a Canadian coldwater spring-springbrook system. Holarct. Ecol. 11: 4154.Google Scholar
Williams, D.D., Januszczak, C.C., and Williams, N.E.. 1991. Habitat and resource partitioning amongst caddisfly larvae in a coldwater springbrook. Proc. 6th int. Conf. on Trichoptera, Lødz, Poland. In press.Google Scholar
Williams, D.D., and Williams, N.E.. 1975. A contribution to the biology of Ironoquia punctatissima (Trichoptera: Limnephilidae). Can. Ent. 107: 829832.Google Scholar
Williams, N.E., and Hynes, H.B.N.. 1973. Microdistribution and feeding of the net-spinning caddisflies (Trichoptera) of a Canadian stream. Oikos 24: 7384.Google Scholar
Williams, W.D. 1985. Biotic adaptations in temporary lentic waters with special reference to those in semi-arid regions, pp. 85–110 in Davies, B.R., and Walmsley, R.D. (Eds.), Perspectives in Southern Hemisphere Limnology. Junk, The Hague.Google Scholar
Wilson, E.O. 1975. Sociobiology. Harvard University Press, Harvard. 697 pp.Google Scholar
Winterbourn, M.J. 1973. Ecology of the Copland River warm springs, South Island, New Zealand. Proc. N.Z. ecol. Soc. 20: 7278.Google Scholar
Winterbourn, M.J. 1974. The life histories, trophic relations and production of Stenoperla prasina (Plecoptera) and Deleatidium sp. (Ephemeroptera) in a New Zealand river. Freshwat. Biol. 4: 507524.Google Scholar
Winterbourn, M.J. 1978. The macroinvertebrate fauna of a New Zealand forest stream. N.Z. J. Zool. 5: 157169.Google Scholar
Winterbourn, M.J., Rounick, J.S., and Cowie, B.. 1981. Are New Zealand stream ecosystems really different? N.Z. J. mar. freshwat. Res. 15: 321328.Google Scholar
Wise, E.J. 1980. Seasonal distribution and life histories of Ephemeroptera in a Northumbrian River. Freshwat. Biol. 10: 101111.Google Scholar