Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T10:22:03.106Z Has data issue: false hasContentIssue false

The dissipative quasigeostrophic equations

Published online by Cambridge University Press:  26 February 2010

A. F. Bennett
Affiliation:
Mathematics Department, Monash University, Clayton 3168, Australia.
P. E. Kloeden
Affiliation:
Mathematics Department, Monash University, Clayton 3168, Australia.
Get access

Abstract

Existence and uniqueness of classical solutions are established for the dissipative quasigeostrophic equations of geophysical fluid dynamics, using a priori estimates and a Schauder fixed point theorem. The flow is periodic in both horizontal directions and is bounded above and below by rigid flat surfaces. The Reynolds analogy of unit turbulent Prandtl number is assumed. Existence is proved for an arbitrary finite time, if it is further assumed that the surface temperatures vanish. Without this additional assumption existence is guaranteed only for a certain finite time, which is inversely proportional to the norms of the sources and initial conditions.

Type
Research Article
Copyright
Copyright © University College London 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adams, R. A.. Sobolev Spaces (Academic Press, New York, 1975).Google Scholar
2.Bennett, A. F. and Kloeden, P. E.. “The simplified quasigeostrophic equations: existence and uniqueness of strong solutions”, Mathematika, 27 (1980), 287311.CrossRefGoogle Scholar
3.Bennett, A. F. and Kloeden, P. E.. “The periodic quasigeostrophic equations: existence and uniqueness of strong solutions”, Proc. Roy. Soc. Edin. (to appear).Google Scholar
4.Bennett, A. F. and Kloeden, P. E.. “The quasigeostrophic equations: approximation, predictability and equilibrium spectra of solutions”, Quart. J. R. Met. Soc, 107 (1981), 121136.Google Scholar
5.Bennett, A. F. and Kloeden, P. E.. “Dissipative quasigeostrophic motion and ocean modelling”, Geophys. Astrophys. Fluid Dynamics (to appear).Google Scholar
6.Bretherton, F. P. and Karweit, M.. “Mid-ocean mesoscale modelling”, Proc. Numerical Models of Ocean Circulation (Ocean Affairs Board, Nat. Acad. Sci., Washington, D.C., 1975).Google Scholar
7.Charney, J. G.. “Geostrophic turbulence”, J. Atmos. Set, 28 (1971), 10871095.2.0.CO;2>CrossRefGoogle Scholar
8.Friedman, A.. Partial Differential Equations of Parabolic Type (Prentice-Hall, New Jersey, 1964).Google Scholar
9.Il'in, A. M., Kalashnikov, A. S. and Oleinik, O. A.. “Linear equations of the second order of parabolic type”, Russian Mathematical Surveys, 17 (1962), 1143.CrossRefGoogle Scholar
10.McWilliams, J. C.. “A note on a consistent quasigeostrophic model in a multiply connected domain”, Dyn. Atmos. Oceans, 1 (1979), 427441.CrossRefGoogle Scholar
11.Pedlosky, J.. “The stability of currents in the atmosphere and ocean: Part I”, J. Atmos. Sci., 21 (1964), 201219.2.0.CO;2>CrossRefGoogle Scholar
12.Robinson, A. R.. “Oceanography”, Research Frontiers in Fluid Dynamics. Ed. by Seeger, R. J. and Temple, G. (Interscience, New York, 1964).Google Scholar
13.Robinson, A. R., Harrison, D. E. and Haidvogel, D. B.. “Mesoscale eddies and general ocean circulation models”, Dyn. Atmos. Oceans, 3 (1979), 143180.CrossRefGoogle Scholar
14.Smart, D. R.. Fixed Point Theorems (Cambridge University Press, Cambridge, 1974).Google Scholar