Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-vl2kb Total loading time: 0.202 Render date: 2021-11-28T09:48:45.839Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

SIMULTANEOUS DIOPHANTINE APPROXIMATION ON POLYNOMIAL CURVES

Published online by Cambridge University Press:  10 December 2009

Natalia Budarina
Affiliation:
Department of Mathematics, Logic House, NUI Maynooth, Co Kildare, Republic of Ireland
Detta Dickinson
Affiliation:
Department of Mathematics, Logic House, NUI Maynooth, Co Kildare, Republic of Ireland (email: ddickinson@maths.nuim.ie)
Jason Levesley
Affiliation:
Department of Mathematics, University of York, Heslington, York YO10 5DD, U.K.

Abstract

The Hausdorff dimension and measure of the set of simultaneously ψ-approximable points lying on integer polynomial curves is obtained for sufficiently small error functions.

Type
Research Article
Copyright
Copyright © University College London 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Baker, R. C., Dirichlet’s theorem on Diophantine approximation. Math. Proc. Cambridge Philos. Soc. 83 (1978), 3759.CrossRefGoogle Scholar
[2]Beresnevich, V., Distribution of rational points near a parabola. Dokl. Nats. Akad. Nauk Belarusi 45 (2001), 2123 (in Russian).Google Scholar
[3]Beresnevich, V. V., A Groshev type theorem for convergence on manifolds. Acta Math. Hungar. 94 (2002), 99130.CrossRefGoogle Scholar
[4]Beresnevich, V., Bernik, V., Kleinbock, D. and Margulis, G., Metric Diophantine approximation, the Khintchine–Groshev theorem for non-degenerate manifolds. Mosc. Math. J. 2(2) (2002), 203225.Google Scholar
[5]Beresnevich, V., Dickinson, D. and Velani, S., Diophantine approximation on planar curves and the distribution of rational points. Ann. of Math. (2) 166(2) (2007), 367426.CrossRefGoogle Scholar
[6]Bernik, V. I., An application of Hausdorff dimension in the theory of Diophantine approximation. Acta Arith. 42 (1983), 219253 (in Russian).Google Scholar
[7]Bernik, V. I. and Dodson, M. M., Metric Diophantine Approximation on Manifolds and Hausdorff Dimension (Cambridge Tracts in Mathematics 137), Cambridge University Press (Cambridge, 1999).CrossRefGoogle Scholar
[8]Bernik, V., Kleinbock, D. and Margulis, G. A., Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions. Int. Math. Res. Not. 9 (2001), 453486.CrossRefGoogle Scholar
[9]Budarina, N. and Dickinson, D., Simultaneous Diophantine approximation on surfaces defined by simple polynomial expressions. Math. Proc. R. Ir. Acad. (2009) (submitted).Google Scholar
[10]Bugeaud, Y. and Laurent, M., Exponents of Diophantine approximation. In Diophantine Geometry (Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series 4) (2007) 101–121.Google Scholar
[11]Dickinson, D., Ideas and results from the theory of Diophantine approximation. Conference Proceedings: Diophantine Phenomena in Differential Equations and Dynamical Systems (RIMS Kyoto 2004).Google Scholar
[12]Dickinson, H. and Dodson, M. M., Extremal manifolds and Hausdorff dimension. Duke Math. J. 101(2) (2000), 271281.Google Scholar
[13]Dickinson, H. and Dodson, M. M., Simultaneous Diophantine approximation on the circle and Hausdorff dimension. Math. Proc. Cambridge Philos. Soc. 130 (2001), 515522.CrossRefGoogle Scholar
[14]Dickinson, D. and Velani, S., Hausdorff measure and linear forms. J. Reine Angew. Math. 490 (1997), 136.Google Scholar
[15]Dodson, M. M., Rynne, B. P. and Vickers, J. A. G., Metric Diophantine approximation and Hausdorff dimension on manifolds. Math. Proc. Cambridge Philos. Soc. 105 (1989), 547558.CrossRefGoogle Scholar
[16]Dodson, M. M., Rynne, B. P. and Vickers, J. A. G., Khintchine-type theorems on manifolds. Acta Arith. 57 (1991), 115130.CrossRefGoogle Scholar
[17]Dodson, M. M., Rynne, B. P. and Vickers, J. A. G., Simultaneous Diophantine approximation and asymptotic formulae on manifolds. J. Number Theory 58 (1996), 298316.CrossRefGoogle Scholar
[18]Drutu, C., Diophantine approximation on rational quadrics. Math. Ann. 333 (2005), 405469.CrossRefGoogle Scholar
[19]Falconer, K., Fractal Geometry, Wiley (New York, 1989).Google Scholar
[20]Jarník, V., Über die simultanen Diophantischen Aproximationen. Math. Z. 33 (1931), 505543.CrossRefGoogle Scholar
[21]Kleinbock, D. Y., Extremal subspaces and their sub-manifolds. Geom. Funct. Anal. 13(2) (2003), 437466.CrossRefGoogle Scholar
[22]Kleinbock, D. Y. and Margulis, G. A., Flows on homogeneous spaces and Diophantine approximation on manifolds. Ann. of Math. (2) 148(2) (1998), 339360.CrossRefGoogle Scholar
15
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

SIMULTANEOUS DIOPHANTINE APPROXIMATION ON POLYNOMIAL CURVES
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

SIMULTANEOUS DIOPHANTINE APPROXIMATION ON POLYNOMIAL CURVES
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

SIMULTANEOUS DIOPHANTINE APPROXIMATION ON POLYNOMIAL CURVES
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *