Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-2bgxn Total loading time: 0.319 Render date: 2022-12-04T06:04:09.038Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

PERMUTATION CLASSES OF EVERY GROWTH RATE ABOVE 2.48188

Published online by Cambridge University Press:  10 December 2009

Vincent Vatter*
Affiliation:
Department of Mathematics, Dartmouth College, Hanover, NH 03755, U.S.A. (email: vincent.vatter@dartmouth.edu)

Abstract

We prove that there are permutation classes (hereditary properties of permutations) of every growth rate (Stanley–Wilf limit) at least λ≈2.48187, the unique real root of x5−2x4−2x2−2x−1, thereby establishing a conjecture of Albert and Linton.

Type
Research Article
Copyright
Copyright © University College London 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Albert, M. H., On the length of the longest subsequence avoiding an arbitrary pattern in a random permutation. Random Structures Algorithms 31(2) (2007), 227238.CrossRefGoogle Scholar
[2]Albert, M. H. and Atkinson, M. D., Simple permutations and pattern restricted permutations. Discrete Math. 300(1–3) (2005), 115.CrossRefGoogle Scholar
[3]Albert, M. H. and Linton, S., Growing at a perfect speed. Combin. Probab. Comput. 18 (2009), 301308.CrossRefGoogle Scholar
[4]Arratia, R., On the Stanley–Wilf conjecture for the number of permutations avoiding a given pattern. Electron. J. Combin. 6 (1999), 4, Note, N1.Google Scholar
[5]Balogh, J., Bollobás, B. and Morris, R., Hereditary properties of ordered graphs. In Topics in Discrete Mathematics (Algorithms and Combinatorics 26) (eds M. Klazar, J. Kratochvíl, M. Loebl, J. Matoušek, R. Thomas and P. Valtr), Springer (Berlin, 2006), 179213.CrossRefGoogle Scholar
[6]Bollobás, B., Hereditary and monotone properties of combinatorial structures. In Surveys in Combinatorics 2007 (London Mathematical Society Lecture Note Series 346) (eds A. Hilton and J. Talbot), Cambridge University Press (Cambridge, 2007), 139.Google Scholar
[7]Flajolet, P. and Sedgewick, R., Analytic Combinatorics, Cambridge University Press (Cambridge, 2009).CrossRefGoogle Scholar
[8]Kaiser, T. and Klazar, M., On growth rates of closed permutation classes. Electron. J. Combin. 9(2) (2003), 20, Research paper 10.Google Scholar
[9]Klazar, M., Overview of some general results in combinatorial enumeration. In Permutation Patterns, St Andrews 2007 (London Mathematical Society Lecture Note Series) (eds. S. Linton, N. Ruškuc and V. Vatter), Cambridge University Press (Cambridge), (to appear).Google Scholar
[10]Marcus, A. and Tardos, G., Excluded permutation matrices and the Stanley–Wilf conjecture. J. Combin. Theory Ser. A 107(1) (2004), 153160.CrossRefGoogle Scholar
[11]Vatter, V., Small permutation classes. arXiv:0712.4006v2 [math.CO].Google Scholar
10
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

PERMUTATION CLASSES OF EVERY GROWTH RATE ABOVE 2.48188
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

PERMUTATION CLASSES OF EVERY GROWTH RATE ABOVE 2.48188
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

PERMUTATION CLASSES OF EVERY GROWTH RATE ABOVE 2.48188
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *