Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-05T21:53:28.089Z Has data issue: false hasContentIssue false

Model structure on the universe of all types in interval type theory

Published online by Cambridge University Press:  14 October 2020

Simon Boulier
Affiliation:
Inria, France
Nicolas Tabareau*
Affiliation:
Inria, France
*
*Corresponding author. Email: nicolas.tabareau@inria.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Model categories constitute the major context for doing homotopy theory. More recently, homotopy type theory (HoTT) has been introduced as a context for doing syntactic homotopy theory. In this paper, we show that a slight generalization of HoTT, called interval type theory (⫿TT), allows to define a model structure on the universe of all types, which, through the model interpretation, corresponds to defining a model structure on the category of cubical sets. This work generalizes previous works of Gambino, Garner, and Lumsdaine from the universe of fibrant types to the universe of all types. Our definition of ⫿TT comes from the work of Orton and Pitts to define a syntactic approximation of the internal language of the category of cubical sets. In this paper, we extend the work of Orton and Pitts by introducing the notion of degenerate fibrancy, which allows to define a fibrant replacement, at the heart of the model structure on the universe of all types. All our definitions and propositions have been formalized using the Coq proof assistant.

Type
Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Footnotes

This work has been supported by the CoqHoTT ERC Grant 637339.

References

Altenkirch, T., Capriotti, P., Dijkstra, G., Kraus, N. and Forsberg, F. N. (2018). Quotient inductive-inductive types. In: FoSSaCS, Lecture Notes in Computer Science, vol. 10803, Springer, 293310. https://doi.org/10.1007/978-3-319-89366-2_16.Google Scholar
Altenkirch, T., Capriotti, P. and Kraus, N. (2016). Extending homotopy type theory with strict equality. In: CSL, LIPIcs, vol. 62, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 21:121:17. https://doi.org/10.4230/LIPIcs.CSL.2016.21.Google Scholar
Angiuli, C., Brunerie, G., Coquand, T., Hou, K.-B., Harper, R. and Licata, D. R. (2019). Cartesian cubical type theory. Draft. https://github.com/dlicata335/cart-cube/blob/master/cart-cube.pdf.Google Scholar
Angiuli, C., Hou, K.-B. F. and Harper, R. (2018). Cartesian cubical computational type theory: Constructive reasoning with paths and equalities. In: Computer Science Logic 2018. https://doi.org/10.4230/LIPIcs.CSL.2018.6.Google Scholar
Bezem, M., Coquand, T. and Huber, S. (2013). A model of type theory in cubical sets. In: TYPES, LIPIcs, vol. 26, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 107128. https://doi.org/10.4230/LIPIcs.TYPES.2013.107.Google Scholar
Bezem, M., Coquand, T. and Huber, S. (2019). The univalence axiom in cubical sets. The Journal of Automated Reasoning 63 (2) 159171. https://doi.org/10.1007/s10817-018-9472-6.CrossRefGoogle Scholar
Bezem, M., Coquand, T. and Parmann, E. (2015). Non-constructivity in Kan simplicial sets. In: Altenkirch, T. (ed.) 13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015), Leibniz International Proceedings in Informatics (LIPIcs), vol. 38, Dagstuhl, Germany, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 92106. ISBN 978-3-939897-87-3. doi: 10.4230/LIPIcs.TLCA.2015.92. http://drops.dagstuhl.de/opus/volltexte/2015/5157.Google Scholar
Capriotti, P. (2017). Models of Type Theory with Strict Equality. Phd thesis, University of Nottingham, UK. http://eprints.nottingham.ac.uk/39382/.Google Scholar
Cavallo, E. and Harper, R. (2019). Higher inductive types in cubical computational type theory. PACMPL 3 (POPL) 1:11:27. https://doi.org/10.1145/3290314.Google Scholar
Cohen, C., Coquand, T., Huber, S. and Mörtberg, A. (2017). Cubical type theory: A constructive interpretation of the univalence axiom. FLAP 4 (10) 31273170. http://collegepublications.co.uk/ifcolog/?00019.Google Scholar
Coquand, T., Huber, S. and Mörtberg, A. (2018). On higher inductive types in cubical type theory. In: LICS, ACM, 255264. https://doi.org/10.1145/3209108.3209197.CrossRefGoogle Scholar
Gambino, N. and Garner, R. (2008). The identity type weak factorisation system. Theoretical Computer Science 409 (1) 94109. https://doi.org/10.1145/3209108.3209197.CrossRefGoogle Scholar
Gambino, N. and Sattler, C. (2015). Uniform fibrations and the frobenius condition. arXiv preprint arXiv:1510.00669. https://arxiv.org/abs/1510.00669.Google Scholar
Hirschhorn, P. S. (2003). Model Categories and Their Localizations. Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI.Google Scholar
Hofmann, M. (1997). Syntax and semantics of dependent types. In: Extensional Constructs in Intensional Type Theory, Springer, 1354.CrossRefGoogle Scholar
Homotopy Type Theory wiki. (2014). Homotopy type system. (consulted 10/14/2019). https://ncatlab.org/homotopytypetheory/show/Homotopy+Type+System.Google Scholar
Hovey, M. (2007). Model Categories, vol. 63, American Mathematical Society.Google Scholar
Kapulkin, C. and Lumsdaine, P. L. (2012). The simplicial model of univalent foundations (after voevodsky). arXiv preprint arXiv:1211.2851. https://arxiv.org/abs/1211.2851.Google Scholar
Licata, D. R., Orton, I., Pitts, A. M. and Spitters, B. (2018). Internal universes in models of homotopy type theory. In: FSCD, LIPIcs, vol. 108, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 22:122:17. https://doi.org/10.4230/LIPIcs.FSCD.2018.22.Google Scholar
Lumsdaine, P. L. (2011). Model structures from higher inductive types. Unpublished note. http://peterlefanulumsdaine.com/research/Lumsdaine-Model-strux-from-HITs.pdf.Google Scholar
Nuyts, A. (2018). Robust notions of contextual fibrancy. In: Presentation at HoTT/UF'18 Workshop. https://hott-uf.github.io/2018/abstracts/HoTTUF18_paper_2.pdf.Google Scholar
Orton, I. and Pitts, A. M. (2018). Axioms for modelling cubical type theory in a topos. Logical Methods in Computer Science 14 (4). https://doi.org/10.23638/LMCS-14(4:23)2018.Google Scholar
Orton, I. and Pitts, A. M. (2018). Code supporting Axioms for Modelling Cubical Type Theory in a Topos. https://doi.org/10.17863/CAM.21675.CrossRefGoogle Scholar
Sattler, C. (2017). The Equivalence Extension Property and Model Structures. arXiv preprint arXiv:1704.06911. https://arxiv.org/abs/1704.06911.Google Scholar
Swan, A. W. (2016). An algebraic weak factorisation system on 01-substitution sets: A constructive proof. Journal of Logic & Analysis 8. http://logicandanalysis.org/index.php/jla/article/view/274/109.Google Scholar
The Coq Development Team. (2018). The Coq Proof Assistant Reference Manual. http://coq.inria.fr. Version 8.9.Google Scholar
Voevodsky, V. (2013). A simple type system with two identity types. Unpublished note. https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf.Google Scholar