Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-04T06:59:40.117Z Has data issue: false hasContentIssue false

Pro-Lie groups which are infinite-dimensional Lie groups

Published online by Cambridge University Press:  01 March 2009

K. H. HOFMANN
Affiliation:
Technische Universität Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany. e-mail: hofmann@mathematik.tu-darmstadt.de, neeb@mathematik.tu-darmstadt.de
K.-H. NEEB
Affiliation:
Technische Universität Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany. e-mail: hofmann@mathematik.tu-darmstadt.de, neeb@mathematik.tu-darmstadt.de

Abstract

A pro-Lie group is a projective limit of a family of finite-dimensional Lie groups. In this paper we show that a pro-Lie group G is a Lie group in the sense that its topology is compatible with a smooth manifold structure for which the group operations are smooth if and only if G is locally contractible. We also characterize the corresponding pro-Lie algebras in various ways. Furthermore, we characterize those pro-Lie groups which are locally exponential, that is, they are Lie groups with a smooth exponential function which maps a zero neighbourhood in the Lie algebra diffeomorphically onto an open identity neighbourhood of the group.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Bou89]Bourbaki, N.Lie Groups and Lie Algebras (Chapters 1–3) (Springer–Verlag, 1989).Google Scholar
[Dix57]Dixmier, J.L'application exponentielle dans les groupes de Lie résolubles. Bull. Soc. Math. Fr. 85 (1957), 113121.CrossRefGoogle Scholar
[GI06]Glöckner, H.Implicit functions from topological vector spaces to Banach spaces. Israel J. Math. 155 (2006), 205252CrossRefGoogle Scholar
[GN06]Glöckner, H. and Neeb, K.-H.Infinite-Dimensional Lie Groups, book in preparation.Google Scholar
[Hel78]Helgason, S.Differential Geometry, Lie Groups and Symmetric Spaces (Academic Press, 1978).Google Scholar
[HHL89]Hilgert, J., Hofmann, K. H. and Lawson, J. D.Lie Groups, Convex Cones and Semigroups (Clarendon Press, 1989).Google Scholar
[Ho65]Hochschild, G.The Structure of Lie Groups (Holden Day, 1965).Google Scholar
[HoMs661]Hofmann, K. H. and Mostert, P. S.Elements of Compact Semigroups (Charles E. Merrill Books, 1966).Google Scholar
[HoMo98]Hofmann, K. H. and Morris, S. A.The Structure of Compact Groups. Studies in Math. (de Gruyter, 1998), 2nd ed. (2006).CrossRefGoogle Scholar
[HoMo07]Hofmann, K. H. and Morris, S. A.The Lie Theory of Connected Pro-Lie Groups–a Structure Theory for Pro-Lie Algebras, Pro-Lie Groups and Connected Locally Compact Groups (EMS Publishing House, 2007).CrossRefGoogle Scholar
[Iwa49]Iwasawa, K.On some types of topological groups. Ann. of Math. 50 (1949), 507558.CrossRefGoogle Scholar
[KM97]Kriegl, A. and Michor, P.The convenient setting of global analysis. Math. Surveys and Monographs 53 (Amer. Math. Soc., 1997).CrossRefGoogle Scholar
[Kur59]Kuranishi, M.On the local theory of continuous infinite pseudo groups I. Nagoya Math. J. 15 (1959), 225260.CrossRefGoogle Scholar
[Lew39]Lewis, D.Formal power series transformations. Duke Math. J. 5 (1939), 794805.CrossRefGoogle Scholar
[Mil84]Milnor, J. Remarks on infinite-dimensional Lie groups. pp. 10071057. In: DeWitt, B. and Stora, R. (eds), Relativité, Groupes et Topologie II (Les Houches, 1983), (North Holland, 1984).Google Scholar
[Ne99]Neeb, K.-H. Holomorphy and convexity in Lie theory. Expositions in Mathematics 28 (de Gruyter Verlag, 1999).Google Scholar
[Ne06]Neeb, K.-H.Towards a Lie theory of locally convex groups. Jap. J. Math. 1 (2006), 291468.CrossRefGoogle Scholar
[Omo80]Omori, H.A method of classifying expansive singularities. J. Diff. Geom. 15 (1980), 493512.Google Scholar
[Rob97]Robart, T.Sur l'intégrabilité des sous-algèbres de Lie en dimension infinie. Canad. J. Math. 49:4 (1997), 820839.CrossRefGoogle Scholar
[Sai57]Saito, M.Sur certains groupes de Lie resolubles. Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 7 (1957), 111.Google Scholar
[Sze74]Szente, J.On the topological characterization of transitive Lie group actions. Acta Sci. Math. (Szeged) 36 (1974), 323344.Google Scholar
[St61]Sternberg, S.Infinite Lie groups and the formal aspects of dynamical systems. J. Math. Mech. 10 (1961), 451474.Google Scholar