Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T22:07:55.530Z Has data issue: false hasContentIssue false

On complex Stiefel manifolds

Published online by Cambridge University Press:  24 October 2008

M. F. Atiyah
Affiliation:
Pembroke CollegeCambridge
J. A. Todd
Affiliation:
Downing CollegeCambridge

Extract

In a recent series of papers (10), (11), (12), I. M. James has made an illuminating study of Stiefel manifolds. We shall begin by describing his results (for the complex case). Let Wn, k, for k > 1, denote the complex Stiefel manifold U(n)/U(n − k), where U(n) is the unitary group in n variables. Then we have a natural fibre map Wn, kWn, 1 = S2n−1, where Sr denotes the r-dimensional sphere. Let Pn, k, for k ≥ 1, denote the ‘stunted complex projective space’ obtained from the (n − 1)-dimensional complex projective space† Pn by identifying to a point a subspace Pn−k. Then we have a natural ‘cofibre map’ Pn, kPn, 1 = S2n−2. The space Pn, k is said to be S-reducible if some suspension of the map Pn, kS2n−2 has a right homotopy inverse. The results of James can then be summarized as follows.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Adams, J. F.On Chern characters and the structure of the unitary group. Proc. Comb. Phil. Soc. (to appear).Google Scholar
(2)Atiyah, M. F. and Hirzebrtch, F.Differentiable Riemann-Roch Theorems. Bull. Amer. Math. Soc. 65 (1959), 276–81.CrossRefGoogle Scholar
(3)Borel, A.Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math., Princeton, 57 (1953), 115207.CrossRefGoogle Scholar
(4)Borel, A. and Hirzebruch, F.Characteristic classes and homogeneous spaces I. Amer. J. Math. 80 (1958), 458538.CrossRefGoogle Scholar
(5)Borel, A. and Serre, J-P.Groupes de Lie et puissances r´eduites de Steenrod. Amer. J. Math. 75 (1953), 409–48.CrossRefGoogle Scholar
(6)Bott, R.The stable homotopy of the classical groups. Proc. Nat. Acad. Sci., Wash., 43 (1957), 933–5.CrossRefGoogle ScholarPubMed
(7)Bott, R.The space of loops on a Lie group. Mich. Math. J. 5 (1958), 3561.CrossRefGoogle Scholar
(8)Bott, R. Some remarks on the periodicity theorems. Collogue de Topologie (Lille, 1959).Google Scholar
(9)Hirzebruch, F.Neue topologische Methoden in der algebraischen Geometrie (Leipzig, 1956).Google Scholar
(10)James, I. M.The intrinsic join. Proc. Lond. Math. Soc. (3), 8 (1958), 507–35.CrossRefGoogle Scholar
(11)James, I. M.Cross-sections of Stiefel manifolds. Proc. Lond. Math. Soc. (3), 8 (1958), 536–47.CrossRefGoogle Scholar
(12)James, I. M.Spaces associated with Stiefel manifolds. Proc. Lond. Math. Soc. (3), 9 (1959), 115–40.CrossRefGoogle Scholar
(13)Kervaire, M. and Milnor, J. Bernoulli numbers, homotopy groups and a theorem of Rohlin. Proc. Int. Congr. Math. (Edinburgh, 1958).Google Scholar
(14)Mukohda, S. and Sawaki, S.On the coefficient of a certain symmetric function. Jour. Fac. Sci. Niigata Univ. 1 (1954), 16.Google Scholar
(15)Peterson, F.Some remarks on Chern classes. Ann. Math., Princeton, 69 (1959), 414–20.CrossRefGoogle Scholar