Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T19:01:21.969Z Has data issue: false hasContentIssue false

Multiple points of codimension one immersions of oriented manifolds

Published online by Cambridge University Press:  24 October 2008

Peter John Eccles
Affiliation:
Department of Mathematics, The University, Manchester M 13 9PL

Extract

Work by L.S.Pontrjagin(18) and M.W.Hirsch(7) allows us to identify the stable n-stem with the bordism group of oriented compact closed smooth n-manifolds immersed in ℝn+1. In a recent paper (11), U. Koschorke discusses invariants thereby defined on by analysing the self-intersections of immersed manifolds. In particular he discusses the homomorphism

defined by assigning to a generic immersion Mn → ℝn+1 number (modulo 2) of its (n+ 1)-fold points.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Banchoff, T. F.Triple points and surgery of immersed surfaces. Proc. Amer. Math. Soc. 46 (1974), 407413.CrossRefGoogle Scholar
(2)Barratt, M. G. and Eccles, P. J.Г+-structures I: A free group functor for stable homotopy theory. Topology 13, (1974), 2545.CrossRefGoogle Scholar
(3)Barratt, M. G. and Eccles, P. J.Г+-structures III: The stable structure of Ω ΣA. Topology 13 (1974). 199207.CrossRefGoogle Scholar
(4)Cohen, F. R., Lada, T. J. and May, J. P. The homology of iterated loop spaces. Lecture Notes in Math. no. 533 Berlin, Springer-Verlag, 1976.Google Scholar
(5)Dyer, E. and Lashof, R. K.Homology of iterated loop spaces. Amer. J. Math. 84 (1962), 3588.CrossRefGoogle Scholar
(6)Freedman, M. H.Quadruple points of 3-manifolds in S4. Comment. Math. Helv. 53 (1978), 385394.CrossRefGoogle Scholar
(7)Hirsch, M. W.Immersions of manifolds. Trans. Amer. Math. Soc. 93 (1959), 242276.CrossRefGoogle Scholar
(8)James, I. M.On the suspension triad. Ann. of Math. 63 (1956), 191247.CrossRefGoogle Scholar
(9)Kahn, D. S. and Priddy, S. B.The transfer and stable homotopy theory. Math. Proc. Cambridge Philos. Soc. 83 (1978), 103111.CrossRefGoogle Scholar
(10)Kochman, S.Homology of the classical groups over the Dyer-Lashof algebra. Trans. Amer. Math. Soc. 185 (1973), 83136.CrossRefGoogle Scholar
(11)Koschorke, U.Multiple points of immersions, and the Kahn-Priddy theorem. Math. Z. (to appear).Google Scholar
(12)Koschorke, U. and Sanderson, B.Self intersections and higher hopf invariants. Topology 17 (1978), 283290.CrossRefGoogle Scholar
(13)Madsen, I. On the action of the Dyer-Lashof algebra in H *(G) and H * (G / Top). Thesis, University of Chicago (1970).Google Scholar
(14)Madsen, I.On the action of the Dyer Lashof algebra in H *(G). Pacific J. Math. 60 (1975), 235275.CrossRefGoogle Scholar
(15)May, J. P. The geometry of iterated loop spaces. Lecture Notes in Math. no. 271 Berlin, Springer-Verlag, 1972.Google Scholar
(16)Milnor, J. and Moore, J. C.On the structure of Hopf algebras. Ann. of Math. 81 (1965), 211264.CrossRefGoogle Scholar
(17)Nishida, G.The nilpotency of elements of the stable homotopy groups of spheres. J. Math. Soc. Japan 25 (1973). 707732.Google Scholar
(18)Pontrjagin, L. S.Smooth manifolds and their applications in homotopy theory. Amer. Math. Soc. Transl. Ser. 2 11 (1959), 1114.Google Scholar
(19)Snaith, V. P.A stable decomposition of Ωn Sn X. J. London Math. Soc. (2) 7 (1974), 577583.CrossRefGoogle Scholar
(20)Steenrod, N. E. and Epstein, D. B. A.Cohomology operations. Ann. of Math. Studies. no. 50 (Princeton, 1962).Google Scholar
(21)Wells, R.Cobordism groups of immersions. Topology 5 (1966), 281294.CrossRefGoogle Scholar