Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T13:06:31.112Z Has data issue: false hasContentIssue false

Almost sure convergence of the Hill estimator

Published online by Cambridge University Press:  24 October 2008

Paul Deheuvels
Affiliation:
Université Paris VI, Paris, France
Erich Haeusler
Affiliation:
University of Delaware, Newark, Delaware, U.S.A.
David M. Mason
Affiliation:
Universität M¨nchen, Munich, Germany

Abstract

In this note we characterize those sequences kn such that the Hill estimator of the tail index based on the kn upper order statistics of a sample of size n from a Pareto-type distribution is strongly consistent.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Beirlant, J. and Teugels, J.. Asymptotics of Hill estimator. Teoria Verojatnost 26 (1986), 530536.Google Scholar
[2]Chernoff, H.. A measure of asymptotic efficiency for tests of hypothesis based on the sums of observations. Ann. Math. Statist. 23 (1952), 493507.CrossRefGoogle Scholar
[3]Csáki, E.. The law of the iterated logarithm for normalized empirical distribution functions. Z. Wahrsch. Verw. Gebiete 38 (1977), 147167.CrossRefGoogle Scholar
[4]Csörgő, S., Deheuvels, P. and Mason, D. M.. Kernel estimates for the tail index of a distribution. Ann. Statist. 13 (1985), 10501077.CrossRefGoogle Scholar
[5]Csörgő, S. and Mason, D. M.. Central limit theorems for sums of extreme values. Math. Proc. Cambridge Philos. Soc. 98 (1985), 547548.CrossRefGoogle Scholar
[6]David, H.. Order Statistics, 2nd ed. (Wiley, 1980).Google Scholar
[7]Deheuvels, P.. Strong laws for the k-th order statistics when kc log2n. Probab. Theory Related Fields 72 (1986), 133154.CrossRefGoogle Scholar
[8]Deheuvels, P., Haeusler, E. and Mason, D. M.. On the almost sure behavior of sums of extreme values from a distribution in the domain of attraction of a Gumbel law. (Preprint, 1986.)Google Scholar
[9]Deheuvels, P. and Mason, D. M.. The asymptotic behavior of sums of exponential extreme values. Bull. Sci. Math. (2), 112 (1988), to appear.Google Scholar
[10]Deheuvels, P. and Pfeifer, D.. A semigroup approach to Poisson approximation. Ann. Probab. 14 (1986), 663676.CrossRefGoogle Scholar
[11]Hall, P.. On some simple estimates of an exponent of regular variation. J. Roy. Statist. Soc. Ser. B 44 (1982), 3742.Google Scholar
[12]Haeusler, E. and Mason, D. M.. A law of the iterated logarithm for sums of extreme values from a distribution with a regularly varying upper tail. Ann. Probab. 15 (1987), 932953.CrossRefGoogle Scholar
[13]Haeusler, E. and Teugels, J.. On asymptotic normality of Hill's estimator for the exponent of regular variation. Ann. Statist. 13 (1985), 743756.CrossRefGoogle Scholar
[14]Hill, B. M.. A simple approach to inference about the tail of a distribution. Ann. Statist. 3 (1975), 11631174.CrossRefGoogle Scholar
[15]Kiefer, J.. Iterated logarithm analogues for sample quantiles when p n ↓ 0. Proc. Sixth Berkeley Symp. 1 (1972), 227244.Google Scholar
[16]Mason, D. M.. Laws of large numbers for sums of extreme values. Ann. Probab. 10 (1982), 756764.CrossRefGoogle Scholar
[17]Rényi, A.. Théorie des éléments saillants d'une suite d'observations. In Colloquium in Combinatorial Methods in Probability Theory (Aarhus University, 1962), pp. 104115.Google Scholar
[18]Shorack, G. R. and Wellner, J. A.. Empirical Processes with Applications to Statistics (Wiley, 1986).Google Scholar
[19]Smith, R. L.. Estimating tails of probability distributions. Ann. Statist. 15 (1987), 11741207.CrossRefGoogle Scholar
[20]Smith, R. L. and Weissman, I.. Large deviations of tail estimators based on the Pareto approximation. J. Appl. Prob. 24 (1987), 619630.CrossRefGoogle Scholar
[21]Teugels, J.. Extreme values in insurance mathematics. In Statistical Extremes and Applications (Reidel, 1984), pp. 253259.CrossRefGoogle Scholar