Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T01:53:07.428Z Has data issue: false hasContentIssue false

Almost quasi-isometries and more non-C*-exact groups

Published online by Cambridge University Press:  14 July 2016

MARTIN FINN-SELL*
Affiliation:
Fakultät für Mathematik, Oskar-Morgenstern-Platz 1, 1090 Wien, Österreich. e-mails: martin.finn-sell@univie.ac.at

Abstract

We study permanence results for almost quasi-isometries, the maps arising from the Gromov construction of finitely generated random groups that contain expanders (and hence that are not C*-exact). We show that the image of a sequence of finite graphs of large girth and controlled vertex degrees under an almost quasi-isometry does not have Guoliang Yu's property A. We use this result to broaden the application of Gromov's techniques to sequences of graphs which are not necessarily expanders. Thus, we obtain more examples of finitely generated non-C*-exact groups.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Alon, N., Grytczuk, J., Hałuszczak, M. and Riordan, O. Nonrepetitive colorings of graphs. Random Structures Algorithms 21 (3–4) (2002), 336346. Random structures and algorithms (Poznan, 2001).CrossRefGoogle Scholar
[2] Arzhantseva, G. and Delzant, T. Examples of random groups. Available on the authors' website (2008).Google Scholar
[3] Arzhantseva, G., Guentner, E. and Špakula, J. Coarse non-amenability and coarse embeddings. Geom. Funct. Anal. 22 (1) (2012), 2236.CrossRefGoogle Scholar
[4] Arzhantseva, G. and Osajda, D. Infinitely presented small cancellation groups have the Haagerup property. J. Topol. Anal. 7 (3) (2015), 389406.CrossRefGoogle Scholar
[5] Arzhantseva, G. and Steenbock, M. Rips construction without unique product. http://arxiv.org/abs/1407.2441, (2014).Google Scholar
[6] Brodzki, J., Niblo, G. A., Špakula, J., Willett, R. and Wright, N. Uniform local amenability. J. Noncommut. Geom. 7 (2) (2013), 583603.CrossRefGoogle Scholar
[7] Brown, N. P. and Ozawa, N. C* algebras and Finite-Dimensional Approximations. Graduate Studies in Mathematics. vol. 88. (American Mathematical Society, Providence, RI, 2008).Google Scholar
[8] Chen, X., Wang, Q. and Yu, G. The maximal coarse Baum–Connes conjecture for spaces which admit a fibred coarse embedding into Hilbert space. Adv. Math. 249 (2013), 88130.CrossRefGoogle Scholar
[9] Gromov, M. Random walk in random groups. Geom. Funct. Anal. 13 (1) (2003), 73146.CrossRefGoogle Scholar
[10] Gruber, D. Groups with graphical C(6) and C(7) small cancellation presentations. Trans. Amer. Math. Soc. (2014).CrossRefGoogle Scholar
[11] Guentner, E. Permanence in Coarse Geometry. Recent Progress in General Topology III.Google Scholar
[12] Hall, M. Jr. Coset representations in free groups. Trans. Amer. Math. Soc. 67 (1949), 421432.CrossRefGoogle Scholar
[13] Higson, N. Counterexamples to the coarse Baum–Connes conjecture. Preprint (1999).CrossRefGoogle Scholar
[14] Higson, N., Lafforgue, V. and Skandalis, G. Counterexamples to the Baum–Connes conjecture. Geom. Funct. Anal. 12 (2) (2002), 330354.CrossRefGoogle Scholar
[15] Kirchberg, E. Exact C*-algebras, tensor products, and the classification of purely infinite algebras. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994). (Birkhäuser, Basel, 1995), pages 943954.Google Scholar
[16] Lubotzky, A., Phillips, R. and Sarnak, P. Ramanujan graphs. Combinatorica 8 (3) (1988), 261277.CrossRefGoogle Scholar
[17] Lyndon, R. C. and Schupp, P. E. Combinatorial Group Theory. Classics in Mathematics. (Springer-Verlag, Berlin, 2001). Reprint of the 1977 edition.CrossRefGoogle Scholar
[18] Margulis, G. A. Explicit constructions of graphs without short cycles and low density codes. Combinatorica 2 (1) (1982), 7178.CrossRefGoogle Scholar
[19] Osajda, D. Small cancellation labellings of some infinite graphs and applications. Preprint (http://arxiv.org/abs/1406.5015) (2014).Google Scholar
[20] Oyono–Oyono, H. and Yu, G. K-theory for the maximal Roe algebra of certain expanders. J. Funct. Anal. 257 (10) (2009), 32393292.CrossRefGoogle Scholar
[21] Roe, J. and Willett, R. Ghostbusting and property A. J. Funct. Anal. 266 (3) (2014), 16741684.CrossRefGoogle Scholar
[22] Rosenberg, J. C*-algebras, positive scalar curvature and the Novikov conjecture. II. 123 (1986), 341–374.Google Scholar
[23] Sako, H. A generalisation of expander graphs and local reflexivity of uniform Roe algebras. J. Funct. Anal. 265 (7) (2013), 13671391.CrossRefGoogle Scholar
[24] Sako, H. Property A and the operator norm localization property for discrete metric spaces. J. Reine Angew. Math. 690 (2014), 207216.CrossRefGoogle Scholar
[25] Willett, R. Property A and graphs with large girth. J. Topol. Anal. 3 (3) (2011), 377384.CrossRefGoogle Scholar
[26] Willett, R. and Yu, G. Higher index theory for certain expanders and Gromov monster groups, I. Adv. Math. 229 (3) (2012), 13801416.CrossRefGoogle Scholar
[27] Yu, G. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139 (1) (2000), 201240.CrossRefGoogle Scholar