Skip to main content Accessibility help
×
Home
Hostname: page-component-5f95dd588d-zfpxq Total loading time: 0.25 Render date: 2021-10-28T22:05:38.185Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

On summability domains

Published online by Cambridge University Press:  24 October 2008

N. J. Kalton
Affiliation:
Department of Mathematics, University College of Swansea, Singleton Park, Swansea SA2 8PP

Extract

We denote by ω the space of all complex sequences with the topology given by the semi-norms

where δn(x) = xn. An FK-space, E, is a subspace of ω on which there exists a complete metrizable locally convex topology τ, such that the inclusion (E, τ) ⊂ ω is continuous; if τ is given by a single norm then E is a BK-space.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1)Banach, S.Théorie des opérations linéares (Warsaw, 1932).Google Scholar
(2)Bennett, G.A representation theorem for summability domains. Proc. London Math. Soc. (2), 24 (1972), 193203.CrossRefGoogle Scholar
(3)Eidelheit, M.Zur Theorie der Systeme Lineare Gleichungen. Studia Math. 6 (1936), 139148.CrossRefGoogle Scholar
(4)Eidelheit, M.Zur Theorie der Systeme Lineare Gleichungen (II). Studia Math. 7 (1938), 150154.CrossRefGoogle Scholar
(5)Garling, D. J. H.On topological sequence spaces. Proc. Cambridge Philos. Soc. 63 (1967), 9971019.CrossRefGoogle Scholar
(6)Kalton, N. J.Some forms of the closed graph theorem. Proc. Cambridge Philos. Soc. 70 (1971), 401408.CrossRefGoogle Scholar
(7)Markushevich, A. I.Theory of functions of a complex variable (Prentice-Hall, Englewood Cliffs, 1965).Google Scholar
(8)Mittag-Leffler, G.Sur la représentation analytique des fonctions monogènes uniformes d'une variable indépendante. Acta. Math. 4 (1884), 179.CrossRefGoogle Scholar
(9)Petersen, G. M. and Thompson, A. C.Infinite linear systems. J. London Math. Soc. 38 (1963), 335340.CrossRefGoogle Scholar
(10)Petersen, G. M. and Thompson, A. C.On a theorem of Polya. J. London Math. Soc. 39 (1964), 3134.CrossRefGoogle Scholar
(11)Petersen, G. M. and Baker, A. C.Solvable infinite systems of linear equations. J. London Math. Soc. 39 (1964), 501510.CrossRefGoogle Scholar
(12)Petersen, G. M. and Baser, A. C.On a theorem of Polya (II). J. London Math. Soc. 39 (1964), 745752.CrossRefGoogle Scholar
(13)Polya, G.Eine einfache, mit funktionentheoretischen Aufgaben, verknüpfte, hinreichende Bedingung für die Auflösbarkeit eines Systems unendlich vieler linearer Gleichungen. Comment. Math. Helv. 11 (1939), 234252.CrossRefGoogle Scholar
(14)Robertson, A. P. and Robertson, W.Topological vector spaces (Cambridge University Press, 1964).Google Scholar
(15)Zeller, K.Abschnittskonvergenz in FK-Raümen. Math. Z. 55 (1951), 5570.CrossRefGoogle Scholar
(16)Zeller, K.Über der perfekten Teil von Wilden. Math. Z. 64 (1956), 123130.CrossRefGoogle Scholar
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On summability domains
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On summability domains
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On summability domains
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *