Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-t46fd Total loading time: 0.159 Render date: 2021-10-25T11:10:11.654Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Linear forms in algebraic points of Abelian functions. I

Published online by Cambridge University Press:  24 October 2008

D. W. Masser
Affiliation:
University of Nottingham

Extract

Let Ω be a Riemann matrix whose 2n columns are vectors of Cn. It is well-known (e.g. (10)) that the field of meromorphic functions on Cn with these vectors among their periods is of transcendence degree n over C. More precisely, this field can be written as C(A, B) where A = (A1, …, An) is a vector of algebraically independent functions of the variable z = (z1, …, zn) and B is algebraic over C(A). We shall assume that B is in fact integral of degree d over the ring C[A]. Since the derivatives ∂f/∂zi of a periodic function f(z) are also periodic, the field is mapped into itself by the differential operators ∂/∂zi. Thus there exists a function C(z) in C[A] such that these operators map the ring C[A, B, C−1] into itself.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1)Baker, A.Linear forms in the logarithms of algebraic numbers. Mathematika 13 (1966), 204216.CrossRefGoogle Scholar
(2)Bombieri, E.Algebraic values of meromorphic maps. Invent. Math. 10 (1970), 267287.CrossRefGoogle Scholar
(3)Cassels, J. W. S.An introduction to diophantine approximation. (Cambridge, 1957.)Google Scholar
(4)Gelfond, A. O.Transcendental and algebraic numbers. (New York: Dover, 1960.)Google Scholar
(5)Landau, E.Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. (Leipzig: Teubner, 1918.)Google Scholar
(6)Lang, S.Introduction to transcendental numbers. (Reading: Addison-Wesley, 1966.)Google Scholar
(7)Masser, D. W. Elliptic functions and transcendence. Ph.D. thesis, University of Cambridge, 1974 (to appear in the Springer Lecture Notes series).Google Scholar
(8)Roth, K. F.Rational approximations to algebraic numbers. Mathematika 2 (1955), 120.CrossRefGoogle Scholar
(9)Schneider, T.Einführung in die transzendenten Zahlen. (Berlin: Springer-Verlag, 1957.)CrossRefGoogle Scholar
(10)Siegel, C. L.Topics in complex function theory vol. III. (New York: Wiley-Interscience, 1973.)Google Scholar
9
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Linear forms in algebraic points of Abelian functions. I
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Linear forms in algebraic points of Abelian functions. I
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Linear forms in algebraic points of Abelian functions. I
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *