Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-04T20:03:31.630Z Has data issue: false hasContentIssue false

Average Frobenius distribution for the degree two primes of a number field

Published online by Cambridge University Press:  16 January 2013

KEVIN JAMES
Affiliation:
Department of Mathematical Sciences, Clemson University, Box 340975 Clemson, SC 29634-0975, U.S.A. e-mail: kevja@clemson.edu URL: www.math.clemson.edu/~kevja
ETHAN SMITH
Affiliation:
Centre de recherches mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal, Québec, H3C 3J7, Canada; and Department of Mathematical Sciences, Michigan Technological University Townsend Drive, Houghton, Michigan, 49931-1295, U.S.A. e-mail: ethans@mtu.edu URL: www.math.mtu.edu/~ethans

Abstract

Let K be a number field and r an integer. Given an elliptic curve E, defined over K, we consider the problem of counting the number of degree two prime ideals of K with trace of Frobenius equal to r. Under certain restrictions on K, we show that “on average” the number of such prime ideals with norm less than or equal to x satisfies an asymptotic identity that is in accordance with standard heuristics. This work is related to the classical Lang–Trotter conjecture and extends the work of several authors.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baier, S.The Lang–Trotter conjecture on average. J. Ramanujan Math. Soc. 22 (4) (2007), 299314.Google Scholar
[2]Battista, J., Bayless, J., Ivanov, D. and James, K.Average Frobenius distributions for elliptic curves with nontrivial rational torsion. Acta Arith. 119 (1) (2005), 8191.CrossRefGoogle Scholar
[3]Burgess, D. A.On character sums and L-series. II. Proc. London Math. Soc. (3) 13 (1963), 524536.CrossRefGoogle Scholar
[4]Calkin, N., Faulkner, B., James, K., King, M. and Penniston, D.Average Frobenius distributions for elliptic curves over abelian extensions. Acta Arith. 149 (3) (2011), 215244.CrossRefGoogle Scholar
[5]David, C. and Pappalardi, F.Average Frobenius distributions of elliptic curves. Internat. Math. Res. Notices 1999 (4) (1999), 165183.CrossRefGoogle Scholar
[6]David, C. and Pappalardi, F.Average Frobenius distribution for inerts in (i). J. Ramanujan Math. Soc. 19 (3) (2004), 181201.Google Scholar
[7]Deuring, M.Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14 (1941), 197272.CrossRefGoogle Scholar
[8]Dummit, D. S. and Foote, R. M.Abstract Algebra (John Wiley & Sons Inc., Hoboken, NJ, third edition, 2004).Google Scholar
[9]Fouvry, E. and Murty, M. R.On the distribution of supersingular primes. Canad. J. Math. 48 (1) (1996), 81104.CrossRefGoogle Scholar
[10]Iwaniec, H. and Kowalski, E.Analytic Number Theory American Mathematical Society Colloquium Publications, vol. 53. (American Mathematical Society, Providence, RI, 2004).Google Scholar
[11]James, K.Average Frobenius distributions for elliptic curves with 3-torsion. J. Number Theory 109 (2) (2004), 278298.CrossRefGoogle Scholar
[12]James, K. and Smith, E.Average Frobenius distribution for elliptic curves defined over finite Galois extensions of the rationals. Math. Proc. Camb. Phil. Soc. 150 (3) (2011), 439458.CrossRefGoogle Scholar
[13]Lang, S.Algebraic Number Theory. Graduate Texts in Mathematics, vol. 110. (Springer-Verlag, New York, 1994), second edition.CrossRefGoogle Scholar
[14]Lang, S. and Trotter, H.Frobenius Distributions in GL 2-extensions. Lecture Notes in Mathematics, vol. 504. (Springer-Verlag, Berlin, 1976). Distribution of Frobenius automorphisms in GL 2-extensions of the rational numbers.CrossRefGoogle Scholar
[15]Lenstra, H.W. Jr.Factoring integers with elliptic curves. Ann. of Math. (2) 126 (3) (1987), 649673.CrossRefGoogle Scholar
[16]Murty, M. RamProblems in Analytic Number Theory. Graduate Texts in Mathematics, vol. 206. (Springer-Verlag, New York, 2001). Readings in Mathematics.CrossRefGoogle Scholar
[17]Schoof, R.Nonsingular plane cubic curves over finite fields. J. Combin. Theory Ser. A 46 (2) (1987), 183211.CrossRefGoogle Scholar
[18]Silverman, J. H.The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. (Springer-Verlag, New York, 1992), Corrected reprint of the 1986 original.Google Scholar
[19]Smith, E.A variant of the Barban–Davenport–Halberstam theorem. Int. J. Number Theory 7 (8) (2011), 22032218.CrossRefGoogle Scholar
[20]Washington, L. C.Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, vol. 83. (Springer-Verlag, New York, 1997), second edition.CrossRefGoogle Scholar