Article contents
Regularity and Blow up for Active Scalars
Published online by Cambridge University Press: 12 May 2010
Abstract
We review some recent results for a class of fluid mechanics equations called activescalars, with fractional dissipation. Our main examples are the surface quasi-geostrophicequation, the Burgers equation, and the Cordoba-Cordoba-Fontelos model. We discussnonlocal maximum principle methods which allow to prove existence of global regularsolutions for the critical dissipation. We also recall what is known about the possibilityof finite time blow up in the supercritical regime.
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2010
References
Baker, G.R., Li, X. and Morlet, A.C.
Analytic structure of 1D-transport equations with nonlocal
fluxes
. Physica D, 91
(1996), 349–375.CrossRefGoogle Scholar
A. Bertozzi and A. Majda. Vorticity and
Incompressible Flow. Cambridge University Press, 2002.
Bogdan, K., Stoś, A. and Sztonyk, P..
Harnack inequality for
stable processes on
d
-sets
,
Studia Math., 158 (2003),
163–198.CrossRefGoogle Scholar
L. Caffarelli and A. Vasseur. Drift
diffusion equations with fractional diffusion and the quasi-geostrophic
equation. Preprint arXiv:math / 0608447.
Carrillo, J. and Ferreira, L..
The asymptotic
behaviour of subcritical dissipative quasi-geostrophic
equations
. Nonlinearity, 21,
(2008), 1001–1018. CrossRefGoogle Scholar
Chae, D. and Lee, J..
Global well-posedness in
the super-critical dissipative quasi-geostrophic equations
.
Comm. Math. Phys.
233 (2003),
297–311.CrossRefGoogle Scholar
Chen, Q., Miao, C. and Zhang, Z..
A new Bernstein’s
inequality and the 2D dissipative quasi-geostrophic equation
.
Comm. Math. Phys., 271, (2007),
821–838. CrossRefGoogle Scholar
Constantin, P..
Active scalars and
the Euler equation
. Tatra Mountains Math.
Publ., 4 (1994),
25–38.Google Scholar
Constantin, P..
Energy spectrum of
quasigeostrophic turbulence
. Phys. Rev.
Lett., 89, (2002),
184501. CrossRefGoogle ScholarPubMed
Constantin, P., Cordoba, D. and Wu, J..
On the critical dissipative
quasi-geostrophic equation
. Dedicated to Professors
Ciprian Foias and Roger Temam (Bloomington, IN, 2000). Indiana Univ. Math. J.,
50, (2001), 97–107.
Google Scholar
Constantin, P., Majda, A. and Tabak, E..
Formation of strong
fronts in the 2D quasi-geostrophic thermal active scalar
.
Nonlinearity, 7, (1994),
1495–1533. CrossRefGoogle Scholar
Constantin, P., Iyer, G. and Wu, J..
Global regularity for a
modified critical dissipative quasi-geostrophic equation
.
Indiana Univ. Math. J., 57, (2008),
2681–2692. CrossRefGoogle Scholar
Constantin, P. and
Wu, J..
Behavior of solutions of 2D
quasi-geostrophic equations
. SIAM J. Math.
Anal., 30, (1999),
937–948. CrossRefGoogle Scholar
P. Constantin and J. Wu. Regularity of
Hölder continuous solutions of the supercritical quasi-geostrophic equation.
Preprint, arXiv:math / 0701592.
P. Constantin and J. Wu. Hölder continuity
of solutions of supercritical dissipative hydrodynamic transport equations.
Preprint, arXiv:math / 0701594.
Cordoba, D..
Nonexistence of simple
hyperbolic blow up for the quasi-geostrophic equation
.
Ann. of Math., 148, (1998),
1135–1152. CrossRefGoogle Scholar
Cordoba, A. and Cordoba, D..
A maximum principle
applied to quasi-geostrophic equations
. Commun. Math.
Phys., 249, (2004),
511–528. CrossRefGoogle Scholar
Cordoba, A., Cordoba, D. and Fontelos, M..
Formation of
singularities for a transport equation with nonlocal
velocity
. Ann. of Math. (2),
162, (2005), 1377–1389.
CrossRefGoogle Scholar
Denisov, S..
Infinite superlinear
growth of the gradient for the two-dimensional Euler
equation
. Discrete Contin. Dyn. Syst.,
23, (2009), 755-764.
CrossRefGoogle Scholar
H. Dong. Higher regularity for the critical
and super-critical dissipative quasi-geostrophic equations. Preprint arXiv:math
/ 0701826.
H. Dong and D. Du. Global well-posedness
and a decay estimate for the critical dissipative quasi-geostrophic equation in the
whole space. Preprint arXiv:math / 0701828.
H. Dong and N. Pavlovic. A regularity
criterion for the dissipative quasi-geostrophic equations. Preprint arXiv:math
/ 07105201.
Dong, H., Du, D. and Li, D..
Finite time singularities
and global well-posedness for fractal Burgers equations
.
Indiana Univ. Math. J., 58, (2009),
807–821. CrossRefGoogle Scholar
Held, I., Pierrehumbert, R.,
Garner, S. and Swanson, K..
Surface
quasi-geostrophic dynamics
. J. Fluid Mech.,
282, (1995), 1–20.
CrossRefGoogle Scholar
S. Friedlander, N. Pavlovic and V. Vicol.
Nonlinear instability for critically dissipative quasi-geostrophic
equation. Preprint.
Ju, N..
The maximum principle and
the global attractor for the dissipative 2D quasi-geostrophic
equations
. Comm. Math. Phys.,
255, (2005), 161–181.
CrossRefGoogle Scholar
Ju, N..
Global solutions to the two
dimensional quasi-geostrophic equation with critical or super-critical
dissipation
. Math. Ann.,
334, (2006), 627–642.
CrossRefGoogle Scholar
Ju, N..
Geometric constrains for
global regularity of 2D quasi-geostrophic flows
. J.
Differential Equations, 226, (2006),
54–79. CrossRefGoogle Scholar
Ju, N..
Dissipative 2D
quasi-geostrophic equation: local well-posedness, global regularity and similarity
solutions
. Indiana Univ. Math. J.,
56, (2007), 187–206.
CrossRefGoogle Scholar
W. Feller. Introduction to Probability Theory and
Applications. Vol. 2, Wiley, 1971.
Kiselev, A., Nazarov, F. and Shterenberg, R..
On blow up and
regularity in dissipative Burgers equation
. Dynamics
of PDE, 5, (2008),
211–240. Google Scholar
Kiselev, A., Nazarov, F. and Volberg, A..
Global well-posedness
for the critical 2D
dissipative quasi-geostrophic
equation
. Inventiones Math.,
167, (2007), 445–453.
CrossRefGoogle Scholar
A. Kiselev and F. Nazarov. A variation on a
theme of Caffarelli and Vasseur. to appear at Zapiski Nauchn. Sem. POMI.
A. Kiselev and F. Nazarov. Nonlocal maximum
principles for active scalars, title tentative, in preparation.
Li, D. and Rodrigo, J..
Blow-up of solutions
for a 1D transport equation with nonlocal velocity and supercritical
dissipation
. Adv. Math.,
217, (2008), 2563–2568.
CrossRefGoogle Scholar
C. Marchioro and M. Pulvirenti. Mathematical Theory
of Incompressible Nonviscous Fluids. Springer-Verlag, New York 1994.
C. Miao and L. Xue. Global wellposedness
for a modified critical dissipative quasi-geostrophic equation, arXiv:math /
0901.1368 (2009).
Miura, H..
Dissipative
quasi-geostrophic equation for large initial data in the critical Sobolev
space
. Comm. Math. Phys.,
267, (2006), 141–157.
CrossRefGoogle Scholar
Morlet, A.C..
Further properties of a
continuum of model equations ith globally defined flux
.
J. Math. Anal. Appl., 22, (1998),
132–160. CrossRefGoogle Scholar
Nadirashvili, N. S..
Wandering
solutions of the two-dimensional Euler equation
.
(Russian) Funkcional. Anal. i Prilozh., 25,
(1991), 70–71; translation in Funct.
Anal. Appl. 25, (1991), 220–221 (1992). Google Scholar
S. Resnick. Dynamical problems in
nonlinear advective partial differential equations. Ph.D. Thesis, University of
Chicago, 1995.
L. Smith and J. Sukhatme. Eddies and waves
in a family of dispersive dynamically active scalars. Preprint arXiv:0709.2897.
L. Sylvestre. Eventual regularization for
the slightly supercritical quasi-geostrophic equation. Preprint arXiv:math /
0812.4901.
M. Taylor. Partial Differential Equations III:
Nonlinear Equations. Springer-Verlag, New York, 1997.
Wu, J..
The quasi-geostrophic
equation and its two regularizations
. Comm. Partial
Differential Equations, 27, (2002),
1161–1181. CrossRefGoogle Scholar
Wu, J..
Existence and uniqueness
results for the 2-D dissipative quasi-geostrophic equation
.
Nonlinear Anal., 67, (2007),
3013–3036. CrossRefGoogle Scholar
Wu, J..
Solutions of the 2D
quasi-geostrophic equation in Hölder spaces
.
Nonlinear Anal., 62, (2005),
579–594. CrossRefGoogle Scholar
Wu, J..
The two-dimensional
quasi-geostrophic equation with critical or supercritical
dissipation
. Nonlinearity,
18, (2005), 139–154.
CrossRefGoogle Scholar
Yudovich, V.I..
The loss of smoothness
of the solutions of Euler equations with time
.
(Russian) Dinamika Sploshn. Sredy Vyp. 16, Nestacionarnye Problemy
Gidrodinamiki
121 (1974), 71–78.
Google Scholar
Yudovich, V.I..
On the loss of
smothness of the solutions of the Euler equations and the inherent instability of
flows of an ideal fluid
. Chaos,
10, (2000), 705–719.
CrossRefGoogle ScholarPubMed
- 55
- Cited by