Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-5dd2w Total loading time: 0.529 Render date: 2022-05-23T02:55:17.873Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Particle Dynamics Methods of Blood Flow Simulations

Published online by Cambridge University Press:  10 August 2011

A. Tosenberger*
Affiliation:
Institut Camille Jordan, Université Lyon 1, UMR 5208 CNRS 69622 Villeurbanne, France
V. Salnikov
Affiliation:
Institut Camille Jordan, Université Lyon 1, UMR 5208 CNRS 69622 Villeurbanne, France
N. Bessonov
Affiliation:
Institut Camille Jordan, Université Lyon 1, UMR 5208 CNRS 69622 Villeurbanne, France Institute of Mechanical Engineering Problems, 199178 Saint Petersburg, Russia
E. Babushkina
Affiliation:
Institute of Mechanical Engineering Problems, 199178 Saint Petersburg, Russia
V. Volpert
Affiliation:
Institut Camille Jordan, Université Lyon 1, UMR 5208 CNRS 69622 Villeurbanne, France
*
Corresponding author. E-mail: tosenberger@math.univ-lyon1.fr
Get access

Abstract

Various particle methods are widely used to model dynamics of complex media. In this work molecular dynamics and dissipative particles dynamics are applied to model blood flows composed of plasma and erythrocytes. The properties of the homogeneous particle fluid are studied. Capillary flows with erythrocytes are investigated.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bui, C., Lleras, V., Pantz, O., Dynamics of red blood cells in 2D, ESAIM Proceedings, 28 (2009), 182194. CrossRefGoogle Scholar
Dupin, M. M., Halliday, I., Care, C. M., Alboul, L., Munn, L. L., Modeling the flow of dense suspensions of deformable particles in three dimensions, Physical Review E, 75 (2007), 066707. CrossRefGoogle ScholarPubMed
Espanol, P., Warren, P., Statistical mechanics of dissipative particle dynamics. Europhys. Lett., 30 (1995) (4), 191196. CrossRefGoogle Scholar
Fedosov, D. A., Pivkin, I. V., Karniadakis, G. E., Velocity limit in DPD simulations of wall-bounded flows, Journal of Computational Physics, 227 (2008), 2540-2559. CrossRefGoogle Scholar
Fedosov, D. A., Caswell, B., Karniadakis, G. E., A multiscale red blood cell model with accurate mechanics, rheology, and dynamics, Biophysical Journal, 98 (2010), 2215-2225. CrossRefGoogle ScholarPubMed
D. A. Fedosov, Multiscale Modeling of Blood Flow and Soft Matter, PhD dissertation at Brown University, (2010).
A.L. Fogelson, em Cell-based models of blood clotting, In: A.R.A Anderson, A.A.J. Chaplain, K.A. Rejniak (Eds). Single-cell-based models in biology and medicine. Birkauser, Basel, 2007, pp. 243–270.
G.P. Galdi, R. Rannacher, A.M. Robertson, S. Turek, Hemodynamics flow. Modeling, analysis, and simulations, Birkhäuser, Basel, 2008.
Groot, R. D., Warren, P. B., Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys., 107 (1997) (11), 44234435. CrossRefGoogle Scholar
Hosseini, S. M., Feng, J. J., A particle-based model for the transport of erythrocytes in capillaries, Chem. Eng. Sci., 64 (2009), 44884497. CrossRefGoogle Scholar
M. Karttunen, I. Vattulainen, A. Lukkarinen, A novel methods in soft matter simulations, Springer, Berlin, 2004.
K. Tsubota, S. Wada, H. Kamada, Y. Kitagawa, R. Lima, T. Yamaguchi, A particle method for blood flow simulation, application to flowing red blood cells and platelets, Journal of the Earth Simulator, Volume 5, March 2006, 2–7.

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Particle Dynamics Methods of Blood Flow Simulations
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Particle Dynamics Methods of Blood Flow Simulations
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Particle Dynamics Methods of Blood Flow Simulations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *