Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-95llv Total loading time: 0.16 Render date: 2021-05-11T12:07:18.959Z Has data issue: true Feature Flags: {}

Lp-boundedness of Multilinear Pseudo-differential Operators on Zn and Tn

Published online by Cambridge University Press:  17 July 2014

Get access

Abstract

The aim of this paper is to introduce and study multilinear pseudo-differential operators on Zn and Tn = (Rn/ 2πZn) the n-torus. More precisely, we give sufficient conditions and sometimes necessary conditions for Lp-boundedness of these classes of operators. L2-boundedness results for multilinear pseudo-differential operators on Zn and Tn with L2-symbols are stated. The proofs of these results are based on elementary estimates on the multilinear Rihaczek transforms for functions in L2(Zn) respectively L2(Tn) which are also introduced.

We study the weak continuity of multilinear operators on the m-fold product of Lebesgue spaces Lpj(Zn), j = 1,...,m and the link with the continuity of multilinear pseudo-differential operators on Zn.

Necessary and sufficient conditions for multilinear pseudo-differential operators on Zn or Tn to be a Hilbert-Schmidt operators are also given. We give a necessary condition for a multilinear pseudo-differential operators on Zn to be compact. A sufficient condition for compactness is also given.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below.

References

Auscher, R., Carro, M.J.. On relations between operators on ℝN, TN and ℤn. Studia Math., 101 (1992), no. 2, 165182. Google Scholar
Bényi, Á., Gröchenig, K., Heil, C., Okoudjou, K., Modulation spaces and a class of bounded multilinear pseudodifferential operators. J. Operator Theory, 54 (2005), 387399. Google Scholar
D. Bose, S. Madan, P. Mohanty, S. Shrivastava. Relations between bilinear multipliers on ℝn, Tn and ℤn. arXiv: 0903.4052v1 [math.CA], 24 Mar 2009.
Carlos Andres, R.T.. Lp-estimates for pseudo-differential operators on ℤn. J. Pseudo-Differ. Oper. Appl., 2 (2011), 367375. CrossRefGoogle Scholar
V. Catană, S. Molahajloo, M.W. Wong. L p-boundedness of multilinear pseudo-differential operators. In Operator Theory: Advances and Applications. vol. 205, 167-180, Birhäuser Verlag, Basel, 2009.
M. Charalambides, M. Christ. Near-extremizers of Young’s inequality for discrete groups. arXiv: 1112.3716v1 [math.CA], 16 Dec. 2011.
Grafakos, L., Torres, R.H.. Multilinear Calderon-Zygmund theory. Advances in Mathematics, 165 (2002), no. 1, 124164. CrossRefGoogle Scholar
Grafakos, L., Honzik, P.. Maximal transferance and summability of multilinear Fourier series. J. Aust. Math. Soc., 80 (2006), no. 1, 6580. CrossRefGoogle Scholar
L. Grafakos. Classical Fourier Analysis. Second Edition, Springer, 2008.
R.V. Kadison, J.R. Ringrose. Fundamentals of the Theory of Operator Algebras: Elementary Theory. Academic Press, 1983.
S. Molahajloo, M.W. Wong. Pseudo-differential operators on S 1. In Operator Theory: Advances and Applications, vol. 189, 297-306, Birhäuser Verlag, Basel, 2008.
S. Molahajloo. Pseudo-differential operators on Z. In Operator Theory: Advances and Applications, vol. 205, 213–221, Birhäuser Verlag, Basel, 2009.
M. Pirhayati. Spectral Theory of Pseudo-Differential Operators on S 1. In Pseudo-Differential Operators: Analysis, Applications and Computations, Operator Theory: Advanced and Applications 213, Springer Basel AG 2011.
Ruzhansky, M., Turunen, V.. Quantization of pseudo-differential operators on the torus. J. Fourier Anal. Appl., 16 (2010), 943-982. CrossRefGoogle Scholar
M. Ruzhansky, V. Turunen. Pseudo-Differential Operators and Symmetries. Birhäuser, 2010.
Ruzhansky, M., Turunen, V.. On the toriodal quantization of periodic pseudo-differential operators. Numerical Functional Analysis and Optimization, 30 (2009), 1098-1124. CrossRefGoogle Scholar
M.W. Wong. Discrete Fourier Analysis. Birhäuser, 2011.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Lp-boundedness of Multilinear Pseudo-differential Operators on Zn and Tn
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Lp-boundedness of Multilinear Pseudo-differential Operators on Zn and Tn
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Lp-boundedness of Multilinear Pseudo-differential Operators on Zn and Tn
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *