Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-qn7h5 Total loading time: 0.372 Render date: 2022-10-02T13:00:24.875Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Fibonacci-Lucas hyperbolas

Published online by Cambridge University Press:  22 June 2022

Howard Sporn*
Affiliation:
Department of Mathematics and Computer Science, Queensborough Community College, Bayside, NY, USA 11364 e-mail: hsporn@qcc.cuny.edu

Extract

Let us define a Fibonacci-Lucas hyperbola as a hyperbola passing through an infinite number of points of the form (Fm, Ln), where the Fm are distinct Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21,…, where F0 = 0), and the Ln are distinct Lucas numbers (2, 1, 3, 4, 7, 11, 18, 29,…,. where L0 = 2). The simplest examples are 5x2 - y2 = 4, which contains the points (Fk, Lk) with odd subscripts, e.g. (1, 1), (2, 4), (5, 11), and 5x2 - y2 = -4, which contains the points with even subscripts, e.g. (0, 2), (1, 3), (3, 7); (see [1, 2]). These follow immediately from the identity (1)

$$L_n^2 - 5F_n^2 = 4{( - 1)^n}.$$
Our goal is to find more of these Fibonacci-Lucas hyperbolas.

Type
Articles
Copyright
© The Authors, 2022 Published by Cambridge University Press on behalf of The Mathematical Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Georghiou, C. and Brady, W. G., Fibonacci-Lucas hyperbola for odd n, in elementary problems and solutions, Fibonacci Quarterly, 25 (1987), p. 181.Google Scholar
Lee, J. Z., Lee, J. S., and Brady, W. G., Fibonacci-Lucas hyperbola for even n, in elementary problems and solutions, Fibonacci Quarterly, 25 (1987), p. 181.Google Scholar
Kimberling, C., Fibonacci hyperbolas, Fibonacci Quarterly, 28 (1990), pp. 2227.Google Scholar
Koshy, T., Fibonacci and Lucas Numbers with applications, Wiley (2001).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fibonacci-Lucas hyperbolas
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Fibonacci-Lucas hyperbolas
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Fibonacci-Lucas hyperbolas
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *