Published online by Cambridge University Press: 23 January 2015
In a previous note [1], Fermat's method of descente infinie was used to prove that the equations.
have no positive integer solutions. The geometrically based proof of [1] masked the underlying use of the difference of two squares. In the proofs of this article we shall make its use explicit, just as Fermat did [2, pp. 293-294].
We shall use the elementary idea of the difference of two squares to develop a powerful technique for solving equations of the form ax4 + bx2y2 + cy4 = z2. This will then be applied to three problems of historical interest.