Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-01T20:08:15.905Z Has data issue: false hasContentIssue false

92.81 10n2 +2 revealed

Published online by Cambridge University Press:  01 August 2016

Philip W. Kuchel*
Affiliation:
School of Molecular and Microbial Biosciences, and the Centre for Mathematical Biology, University of Sydney, NSW 2006, Australia

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weisstein, E. W. Cuboctahedron.Google Scholar
2. Cundy, H. M. and Rollett, A P. Mathematical models, Oxford University Press, (1972) pp. 102, 130, 145.Google Scholar
3. Kuchel, P. W. Can you bend a truncated octahedron? Math. Gaz. 91 (November 2007) pp. 533536.Google Scholar
4. Spiegel, M. R. Schaum’s mathematical handbook of formulas and tables, McGraw-Hill (1968).Google Scholar
5. Coxeter, H. S. M. Introduction to geometry, (2nd edn.), Wiley (1969) pp. 405411.Google Scholar
6. Conway, J. H. and Sloane, N. J. A. Low-dimensional lattices VII: coordination sequences. Proc. Roy. Soc. Lond. A453, (1997) pp. 23692389.Google Scholar