Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-24T17:28:00.843Z Has data issue: false hasContentIssue false

Diurnal and spatial variation of the mesozooplankton community in the Saint Peter and Saint Paul Archipelago, Equatorial Atlantic

Published online by Cambridge University Press:  18 December 2012

Pedro Augusto Mendes De Castro Melo*
Affiliation:
Federal University of Pernambuco, Department of Oceanography, Avenida Arquitetura s/n, 50740-550, Recife, Pernambuco, Brazil
Xiomara Franchesca Garcia Diaz
Affiliation:
Federal University of Pernambuco, Department of Oceanography, Avenida Arquitetura s/n, 50740-550, Recife, Pernambuco, Brazil
Silvio José De Macedo
Affiliation:
Federal University of Pernambuco, Department of Oceanography, Avenida Arquitetura s/n, 50740-550, Recife, Pernambuco, Brazil
Sigrid Neumann-Leitão
Affiliation:
Federal University of Pernambuco, Department of Oceanography, Avenida Arquitetura s/n, 50740-550, Recife, Pernambuco, Brazil
*
Correspondence should be addressed to: P.A.M. de C. Melo, Federal University of Pernambuco, Department of Oceanography, Avenida Arquitetura s/n, 50740-550, Recife, Pernambuco, Brazil email: pedroamcm@gmail.com
Get access

Abstract

The aim of this study is to assess small-scale variations in and spatial comparisons among the composition, distribution and abundance of the main zooplankton groups in the Saint Peter and Saint Paul Archipelago (SPSPA). Plankton samples were collected in May 2008 by net with a 300 µm mesh size. Sampling was carried out at two stations, Inner and Outer, during five consecutive days in the early morning and late afternoon. A total of 153 zooplankton taxa were identified. Copepoda was the most abundant and frequent group (with 49 species identified). Exocoetidae (Teleostei) eggs were also present in large numbers. No significant differences were found between stations or between day and night samples. The observed biomass was low; however, it was superior to that observed in the open ocean. The density of zooplankton was also low, but it increased slightly during the night. Indicator species for upwelling, such as Phaenna spinifera and Flaccisagitta hexaptera, were observed. We conclude that physical factors are important for structuring the SPSPA zooplankton community.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alcaraz, M., Saiz, E., Marrasé, C. and Vaqué, D. (1988) Effects of small-scale turbulence on the development of phytoplankton biomass and copepod populations in marine microcosms. Marine Ecology Progress Series 49, 119204.CrossRefGoogle Scholar
Alcaraz, M., Estrada, M. and Marrasé, C. (1989) Interaction between turbulence and zooplankton in laboratory microcosms. Proceedings of the 21st EMBS, Gandsk, 1989. Polish Academy of Sciences, pp. 191204.Google Scholar
Angel, M.V. (1985) Vertical migrations in the oceanic realm: possible causes and probable effects. In Rankin, M.A. (ed.) Migration: mechanisms and adaptive significance. Supplement 27. Port Aransas: Department of Zoology, University of Texas, pp. 4570.Google Scholar
Angel, M.V. (1989) Does mesopelagic biology affect the vertical flux? In Berger, W.H., Smetacek, V.S. and Wefer, G. (eds) Productivity of the ocean: present and past. New York: John Wiley & Sons, pp. 155173.Google Scholar
Araújo, M. and Cintra, M. (2009) Modelagem matemática da circulação oceânica na região equatorial do Arquipélago de São Pedro e São Paulo. In Hazin, F.H.V. (ed.) O Arquipélago de São Pedro e São Paulo: 10 anos de Estação Científica. Brasília: SECIRM, pp. 106113.Google Scholar
Atkinson, A., Ward, P., Williams, R. and Poulet, S.A. (1992) Diel vertical migration and feeding of copepods at oceanic site near South Georgia. Marine Biology 113, 583593.CrossRefGoogle Scholar
Ayres, M., Ayres, M. Jr, Ayres, D.L. and Santos, A.A.S. (2003) BioEstat 3.0: Aplicações estatísticas nas áreas das ciências bio-médicas. Belém: CNPq/Wild Life Conservation Society.Google Scholar
Björnberg, T.K.S. (1981) Copepoda. In Boltovskoy, D. (ed.) Atlas del zooplancton del Atlántico Sudoccidental y métodos de trabajo com el zooplancton marino. Mar del Plata: INIDEP, pp. 587680.Google Scholar
Boehlert, G.W. (1988) Current–topography interactions at midocean seamounts and the impact on pelagic ecosystems. GeoJournal 1, 4552.CrossRefGoogle Scholar
Boehlert, G.W. and Genin, A. (1987) A review of the effects of seamounts on biological processes. In Keating, B.H., Fryer, P., Batiza, R. and Boehlert, G.W. (eds) Seamounts, islands and atolls. Washington, DC: American Geophysical Union, pp. 319334. [Geophysical Monograph 43.]Google Scholar
Boltovskoy, D. (ed.) (1981) Atlas del zooplancton del Atlántico Sudoccidental y métodos de trabajo con el zooplancton marino. Mar del Plata: INIDEP.Google Scholar
Boltovskoy, D. (ed.) (1999) South Atlantic zooplankton. Leiden, The Netherlands: Backhuys Publishers.Google Scholar
Bonecker, A.C.T., Bonecker, S.L. and Bassani, C. (2002) Plâncton marinho. In Pereira, R.C. and Soares-Gomes, A. (eds) Biologia marinha. Rio de Janeiro: Interciência, pp. 103125.Google Scholar
Bougis, P. (1974) Ecologie du plancton marin.Tome II—Le zooplancton. Collection D’écologie. Volume 2. Paris: Masson et Cie, 196 pp.Google Scholar
Bourdillon, A. (1989) Les repères spatiaux et temporels des migrations verticales journalières du plancton. Océanis 15, 83113.Google Scholar
Boxshall, G.A. (1977) The depth distributions and community organization of the planktonic cyclopoids (Crustacea: Copepoda) of the Cape Verde Islands Region. Journal of the Marine Biological Association of the United Kingdom 57, 543568.CrossRefGoogle Scholar
Bradford-Grieve, J.M. (1994) The marine fauna of New Zealand: pelagic calanoid Copepoda: Megacalanidae, Calanidae, Paracalanidae, Mecynoceridae, Eucalanidae, Spinocalanidae, Clausocalanidae. Wellington: New Zealand Oceanographic Institute Memoir.Google Scholar
Bradford-Grieve, J.M., Boyd, P.W., Chang, F.H., Chiswell, S., Hadfield, M., Hall, J.A., James, M.R., Nodder, S.D. and Shushkina, E.A. (1999) Pelagic ecosystem structure and functioning in the Subtropical Front east of New Zealand in austral winter and spring 1993. Journal of Plankton Research 21, 405428.CrossRefGoogle Scholar
Brandão, M.C. (2007) Variação espacial de Euphausiacea (Crustacea) (‘Krill') no Arquipélago de São Pedro e São Paulo: Verão de 2004. Monografia. Universidade Federal de Santa Catarina.Google Scholar
Campos, T.F.C. (2004) Proposta de sítio geológico do Brasil para registro no Patrimônio mundial. World Heritage Commitee—UNESCO.Google Scholar
Campos, T.F.C., Virgens Neto, J., Amorim, V.A., Hartmann, L.A. and Petta, R.A. (2003) Modificações metassomáticas das rochas milonitizadas do complexo ultramáfico do Arquipélago de São Pedro e São Paulo, Atlântico Equatorial. Geochimica Brasiliensis 17, 8190.Google Scholar
Casanova, J.P. (1999) Chaetognatha. In Boltovskoy, D. (ed.) South Atlantic zooplankton. Leiden, The Netherlands: Backhuys Publishers, pp. 13531374.Google Scholar
Cavalcanti, E.A.H. and Larrazábal, M.E.L. (2004) Macrozooplâncton da Zona Econômica Exclusiva do Nordeste do Brasil (segunda expedição oceanográfica—REVIZEE/NE II) com ênfase em Copepoda (Crustacea). Revista Brasileira de Zoologia 21, 467475.CrossRefGoogle Scholar
De Forest, L. and Drazen, J. (2009) The influence of a Hawaiian seamount on mesopelagic micronekton. Deep-Sea Research Part I: Oceanographic Research Papers 56, 232250.CrossRefGoogle Scholar
Denda, A. and Christiansen, B. (2010) Zooplankton at a seamount in the eastern Mediterranean: distribution and trophic interactions. Journal of the Marine Biological Association of the United Kingdom 91, 3349.CrossRefGoogle Scholar
Denman, K.L., Freeland, H.J. and Mackas, D.L. (1989) Comparisons of time scales for biomass transfer up the marine food web and coastal transport processes. Canadian Special Publication of Fisheries and Aquatic Science 108, 255264.Google Scholar
Doty, M.S. and Ogury, M. (1956) The island mass effect. Journal du Conseil International pour l'Exploration de la Mer 22, 3337.CrossRefGoogle Scholar
Dower, J., Freeland, H. and Juniper, K. (1992) A strong biological response to oceanic flow past Cobb Seamount. Deep-Sea Research 39, 11391145.CrossRefGoogle Scholar
Dower, J.F. and Perry, R.I. (2001) High abundance of larval rockfish over Cobb Seamount, an isolated seamount in the Northeast Pacific. Fisheries Oceanography 10, 268274.CrossRefGoogle Scholar
Edwards, A. and Lubbock, R. (1983) The ecology of Saint Paul's Rocks (Equatorial Atlantic). Journal of Zoology 200, 5169.CrossRefGoogle Scholar
Epifanio, C.E. (1988) Dispersal strategies of two species of swimming crab on the continental shelf adjacent to Delaware. Marine Ecology Progress Series 49, 243248.CrossRefGoogle Scholar
Esteves, E., Moraes, F., Muricy, G. and Amaral, F. (2002) Duas novas ocorrências da Ordem Hadromerida para o Arquipélago de São Pedro e São Paulo, Brasil. Boletim do Museu Nacional, Nova Série, Zoologia 488, 112.Google Scholar
Fernández-Álamo, M.A. and Färber-Lorda, J. (2006) Zooplankton and the oceanography of the eastern tropical Pacific: a review. Progress in Oceanography 69, 318359.CrossRefGoogle Scholar
Fernández, F. (1977) Efecto de la intensidad de luz natural en la actividad metabólica y en la alimentacíon de varias especies de copépodos planctónicos. Investigación Pesquera 41, 575602.Google Scholar
Forward, R.B. (1988) Diel vertical migration: zooplankton photobiology and behaviour. Oceanography and Marine Biology: an Annual Review 26, 361393.Google Scholar
Frost, B.W. and Bollens, S.M. (1992) Variability of diel vertical migration in the marine planktonic copepod Pseudocalanus newmani in relation to its predators. Canadian Journal of Fisheries and Aquatic Sciences 49, 11371141.CrossRefGoogle Scholar
García-Díaz, X.F. (2007) Zooplâncton do Arquipélago de São Pedro e São Paulo (NE, Brasil). Dissertação de Mestrado. Universidade Federal de Pernambuco, Recife.Google Scholar
Genin, A. (2004) Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. Journal of Marine Systems 50, 320.CrossRefGoogle Scholar
Genin, A., Green, C.H., Haury, L.R., Wiebe, P.H., Gal, G., Kaartveldt, S., Meir, E., Fey, C. and Dawson, J. (1994) Zooplankton patch dynamics: daily gap formation over abrupt topography. Deep-Sea Research Part I: Oceanographic Research Papers 41, 941951.CrossRefGoogle Scholar
Genin, A., Haury, L. and Greenblatt, P. (1988) Interactions of migrating zooplankton with shallow topography: predation by rockfishes and intensification of patchiness. Deep-Sea Research 35, 151175.CrossRefGoogle Scholar
Gibbons, M.J., Spiridinov, V. and Tarling, G. (1999) Euphausiacea. In Boltovskoy, D. (ed.) South Atlantic zooplankton. Leiden, The Netherlands: Backhyus Publishers, pp. 12411279.Google Scholar
Gusmão, L.M.O. (1986) Chaetognatha planctônicos de províncias nerítica e oceânica do Nordeste do Brasil (04°00′00″–08°00′00″ latitude sul). PhD thesis. Federal University of Pernambuco, Recife, Brazil.Google Scholar
Haney, J.F. (1988) Diel patterns of zooplankton behaviour. Bulletin of Marine Science 43, 583603.Google Scholar
Haury, L., Fey, C., Newland, C. and Genin, A. (2000) Zooplankton distribution around four eastern North Pacific seamounts. Progress in Oceanography 45, 69105.CrossRefGoogle Scholar
Haury, L.R., Yamazaki, H. and Itsweire, E.C. (1990) Effects of turbulent shear flow on zooplankton distribution. Deep-Sea Research Part I: Oceanographic Research Papers 37, 447461.CrossRefGoogle Scholar
Hunt, B.P.V., Pakhomov, E.A. and McQuaid, C.D. (2002) Community structure of mesozooplankton in the Antarctic polar frontal zone in the vicinity of the Prince Edward Islands (Southern Ocean): small-scale distribution patterns in relation to physical parameters. Deep-Sea Research II 49, 33073325.CrossRefGoogle Scholar
Hunte, W., Oxenford, H. and Mahon, R. (1995) Distribution and relative abundance of flying fish (Exocoetidae) in the eastern Caribbean. II. Spawning substrata, eggs and larvae. Marine Ecology Progress Series 117, 2537.CrossRefGoogle Scholar
Ichimaru, T., Mizuta, K. and Nakazono, A. (2006) Studies on the egg morphology and spawning season in the mirror-finned flying fish Hirundichthys oxycephalus in the waters near Kyushu, Japan. Bulletin of the Japanese Society of Scientific Fisheries 72, 2126.CrossRefGoogle Scholar
Incze, L.S., Hebert, D., Wolff, N., Oakey, N. and Dye, D. (2001) Changes in copepod distributions associated with increased turbulence from wind stress. Marine Ecology Progress Series 213, 229240.CrossRefGoogle Scholar
Kiørboe, T. and Sabatini, M. (1995) Scaling of fecundity, growth and development in marine planktonic copepods. Marine Ecology Progress Series 120, 285298.CrossRefGoogle Scholar
Koettker, A.G., Freire, A.S. and Sumida, P.Y.G. (2010) Temporal, diel and spatial variability of decapod larvae from St Paul's Rocks, an equatorial oceanic island of Brazil. Journal of the Marine Biological Association of the United Kingdom 90, 12271239.CrossRefGoogle Scholar
Lenz, J. (2000) Introduction. In Harris, R., Wiebe, P., Lenz, J., Skojoldal, H.R. and Huntley, M. (eds) ICES zooplankton methodology manual. London: Academic Press, pp. 193221.Google Scholar
Lessa, R.P., Mafalda, P. Jr, Advincula, R., Lucchesi, R.B., Bezerra, J.L. Jr and Vaske, T. Jr (1999) Distribution and abundance of ichthyoneuston at seamounts and islands off north-eastern Brazil. Archive of Fisheries and Marine Research 47, 239252.Google Scholar
Levinton, J.S. (1982) Marine ecology. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Levinton, J.S. (1995) Marine biology: function, biodiversity, ecology. New York: Oxford University Press.Google Scholar
Longhurst, A.R. and Pauly, D. (1987) Ecology of tropical oceans. San Diego, CA: Academic Press.Google Scholar
Lueck, R.G. and Mudge, T.D. (1997) Topographically induced mixing around a shallow seamount. Science 276, 18311833.CrossRefGoogle Scholar
Macedo, S.J., Flores-Montes, M.J. and Costa, K.M.P. (2009) Hidrologia. In Hazin, F.H.V. (ed.) O Arquipélago de São Pedro e São Paulo: 10 anos de Estação Científica. Brasília: SECIRM, pp. 100105.Google Scholar
Margalef, R. (1958) Information theory in ecology. General Systems 3, 3671.Google Scholar
Marshall, S.M. (1973) Respiration and feeding in copepods. Advances in Marine Biology 11, 57120.CrossRefGoogle Scholar
Martin, B. and Christiansen, B. (2009) Distribution of zooplankton biomass at three seamounts in the NE Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography 56, 26712682.CrossRefGoogle Scholar
Mayzaud, P. (1973) Respiration and nitrogen excretion of zooplankton. II. Studies of the metabolic characteristics of starved animals. Marine Biology 21, 1928.CrossRefGoogle Scholar
McLaren, I.A. (1963) Effects of temperature on growth of zooplankton, and the adaptive value of vertical migration. Journal of the Fisheries Research Board of Canada 26, 199220.Google Scholar
Mourino, B., Fernández, E., Serret, P., Harbour, D.S., Sinha, B. and Pingree, R. (2001) Variability and seasonality of physical and biological fields at the Great Meteor Tablemount (subtropical NE Atlantic). Oceanologica Acta 24, 120.CrossRefGoogle Scholar
Navatov, U.N. and Ozmidov, R.V. (1988) A study of turbulence over underwater mounts in the Atlantic Ocean. Oceanology 28, 210217.Google Scholar
Nellen, W. (1973) Untersuchung zur Verteilung von Fischlarven und Plankton im Gebiet der Großen Meteorbank. Meteor Forschungsergebnisse 13, 4769.Google Scholar
Neumann-Leitão, S., Eskinazi-Sant'anna, E.M., Gusmão, L.M.O., Nascimento-Vieira, D.A., Paranaguá, M.N. and Schwamborn, R. (2008) Diversity and distribution of the mesozooplankton in the tropical Southwestern Atlantic. Journal of Plankton Research 30, 795805.CrossRefGoogle Scholar
Neumann-Leitao, S., Gusmao, L.M.O., Silva, T.A.E., Nascimento-Vieira, D.A. and Silva, A.P. (1999) Mesozooplankton biomass and diversity in coastal and oceanic waters off north-eastern Brazil. Archive of Fisheries and Marine Research 47, 153165.Google Scholar
Newell, G.E. and Newell, R.C. (1963) Marine plankton: a pratical guide. London: Hutchinson Educational.Google Scholar
Nishikawa, J., Matsuura, H., Castillo, L.V., Campos, W.L. and Nishida, S. (2007) Biomass, vertical distribution and community structure of mesozooplankton in the Sulu Sea and its adjacent waters. Deep-Sea Research Part II: Topical Studies in Oceanography 54, 114130.CrossRefGoogle Scholar
Omori, M. and Ikeda, T. (1984) Methods in marine zooplankton ecology. New York: Wiley-Interscience Publications.Google Scholar
Palma, S. and Kaiser, K. (1993) Plancton marino de águas chilenas. Valparaíso: Ediciones Universitarias de Valparaíso.Google Scholar
Parsons, T.T., Maita, Y. and Lalli, C.M. (1984) A manual of chemical and biological methods for seawater analysis. New York: Pergamon Press.Google Scholar
Pearre, S.J. (2003) Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biological Reviews 78, 179.CrossRefGoogle ScholarPubMed
Pielou, E.C. (1966) The measure of diversity in different types of biological collections. Journal of Theoretical Biology 13, 133144.CrossRefGoogle Scholar
Pinheiro, P.B. (2004) Biologia do peixe-rei, Elagatis bipinnulatus (Quoy e Gaimard, 1824) capturado na zona econômica exclusiva (ZEE) do nordeste do Brasil. Master's thesis. Federal University of Pernambuco, Recife, Brazil.Google Scholar
Piontkovski, S., Williams, R., Ignatyev, S., Boltachev, A. and Chesalin, M. (2003) Structural–functional relationships in the pelagic community of the eastern tropical Atlantic Ocean. Journal of Plankton Research 26, 10211034.CrossRefGoogle Scholar
Rakhesh, M., Raman, A.V. and Sudarsan, D. (2006) Discriminating zooplankton assemblages in neritic and oceanic waters: a case for the northeast coast of India, Bay of Bengal. Marine Environmental Research 61, 93109.CrossRefGoogle Scholar
Redfield, A.C. and Beale, B. (1940) Factors determining the distribution of populations of chaetognaths in the Gulf of Maine. Biological Bulletin. Marine Biological Laboratory, Woods Hole 79, 459487.CrossRefGoogle Scholar
Reyssac, J. (1963) Chaetognaths of the European continental shelf (from the Ibero-Moroccan bay to the Celtic Sea). Revue des Travaux de l'Institut des Pêches Maritimes 27, 245299.Google Scholar
Richardson, P.L. and Walsh, D. (1986) Mapping climatological seasonal variations of surface currents in the tropical Atlantic using ship drifts. Journal of Geophysical Research 91, 1053710550.CrossRefGoogle Scholar
Rippingale, R.J. and Hodgkin, E.P. (1974) Population growth of a copepod Gladioferens imparipes Thomson. Australian Journal of Marine and Freshwater Research 25, 351360.CrossRefGoogle Scholar
Rogers, A.D. (1994) The biology of seamounts. Advances in Marine Biology 30, 305350.CrossRefGoogle Scholar
Rohlf, F.J. and Fisher, D.L. (1968) Test for hierarchical structure in random data sets. Systematic Zoology 17, 407412.CrossRefGoogle Scholar
Rothschild, B.J. and Osborn, T.R. (1988) Small-scale turbulence and plankton contact rates. Journal of Plankton Research 10, 465474.CrossRefGoogle Scholar
Saltzman, J. and Wishner, K.F. (1997) Zooplankton ecology in the eastern tropical Pacific oxygen minimum zone above a seamount: 1. General trends. Deep-Sea Research Part I: Oceanographic Research Papers 44, 907930.CrossRefGoogle Scholar
Schlacher, T.A. and Wooldridge, T.H. (1995) Small-scale distribution and variability of demersal zooplankton in shallow, temperate estuary: tidal and depth effects on species-specific heterogeneity. Cahiers de Biologie Marine 36, 211227.Google Scholar
Schnack-Schiel, S.B., Mizdalski, E. and Cornils, A. (2010) Copepod abundance and species composition in the eastern subtropical/tropical Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography 57, 20642075.CrossRefGoogle Scholar
Schwamborn, R. and Bonecker, A.C.T. (1996) Seasonal changes in the transport and distribution of meroplankton into a Brazilian estuary with emphasis on the importance of floating mangrove leaves. Arquivos de Biologia e Tecnologia 39, 451462.Google Scholar
Shannon, C.E. (1948) A mathematical theory of communication. Bell System Technical Journal 27, 379423.CrossRefGoogle Scholar
Shomura, R.S. and Barkley, R.A. (1980) Ecosystem dynamics of seamounts—a working hypothesis. In The Kuroshio IV. Proceedings of the 4th Symposium for the cooperative study of the Kuroshio and adjacent regions, Tokyo, 1980. pp. 789790.Google Scholar
Stramma, L. (1991) Geostrophic transport of the South Equatorial Current in the Atlantic. Journal of Marine Research 49, 281294.CrossRefGoogle Scholar
Strickler, J.R. (1985) Feeding currents in calanoid copepods: two new hypotheses. Symposia of the Society for Experimental Biology 89, 459485.Google Scholar
Tiburcio, A.S.X.S., Koening, M.L., Macêdo, S.J. and Melo, P.A.M.C. (2011) Microphytoplankton community of São Pedro e São Paulo Archipelago (Atlantic North Equatorial): diurnal and spatial variation. Biota Neotropica 11, 113.CrossRefGoogle Scholar
Travassos, P., Hazin, F.H.V., Zagaglia, J.R., Advincula, R. and Schober, J. (1999) Thermohaline structure around seamounts and islands off north-eastern Brazil. Archive of Fishery and Marine Research 47, 211222.Google Scholar
Trégouboff, G. and Rose, M. (1957) Manuel de planctonologie mediterranéenne. Paris: Centre Nacional de la Recherche Scientifique.Google Scholar
Tzella, A. and Haynes, P.H. (2007) Small-scale spatial structure in plankton distributions. Biogeosciences 4, 173179.CrossRefGoogle Scholar
Uda, M. and Ishino, M. (1958) Enrichment patterns resulting from eddy systems in relation to fishing grounds. Journal of the Tokyo University of Fisheries 44, 105119.Google Scholar
Uye, S., Huang, C. and Onbe, T. (1990) Ontogenetic diel vertical migration of the planktonic copepod Calanus sinicus in the Inland Sea of Japan. Marine Biology 104, 389396.CrossRefGoogle Scholar
Vaske, T. Jr, Lessa, R.P., Nóbrega, M., Montealegre-Quijano, S., Marcante Santana, F. and Bezerra, J.L. Jr (2005) A checklist of fishes from Saint Peter and Saint Paul Archipelago, Brazil. Journal of Applied Ichthyology 21, 7579.CrossRefGoogle Scholar
Vaske, T. Jr, Nóbreca, M.F., Santana, F.M., Lessa, R.P., Ribeira, A.C.B., Pereira, A.A. and Andrade, C.D.P. (2006) Peixes. In Vaske, T. Jr, Lessa, R.P., Nóbrega, M.F., Amaral, F.M.D. and Silveira, S.R.M. (eds) Arquipélago de São Pedro e São Paulo: histórico e recursos naturais. Olinda, Brazil: Livro Rápido-Elógica, pp. 56151.Google Scholar
Von Bröckel, K. and Meyerhöfer, M. (1999) Impact of the rocks of São Pedro and São Paulo upon the quantity and quality of suspended particulate organic matter. Archive of Fishery and Marine Research 47, 223238.Google Scholar
Wiebe, P.H. (1970) Small-scale spatial distribution in oceanic zooplankton. Limnology and Oceanography 15, 205207.CrossRefGoogle Scholar
Wilson, C.D. and Boehlert, G.W. (1993) Population biology of Gnathophausia longispina (Mysidacea: Lophogastrida) from a central North Pacific seamount. Marine Biology 115, 537543.CrossRefGoogle Scholar
Zaret, T.M. and Suffern, J.S. (1976) Vertical migration in zooplankton as a predator avoidance mechanism. Limnology and Oceanography 21, 804813.CrossRefGoogle Scholar