Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T05:55:12.348Z Has data issue: false hasContentIssue false

Numerical semigroups with a given set of pseudo-Frobenius numbers

Published online by Cambridge University Press:  01 April 2016

M. Delgado
Affiliation:
CMUP, Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal email mdelgado@fc.up.pt
P. A. García-Sánchez
Affiliation:
IEMath-GR, Departamento de Álgebra, Universidad de Granada, 18071 Granada, Spain email pedro@ugr.es
A. M. Robles-Pérez
Affiliation:
Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada, Spain email arobles@ugr.es

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The pseudo-Frobenius numbers of a numerical semigroup are those gaps of the numerical semigroup that are maximal for the partial order induced by the semigroup. We present a procedure to detect if a given set of integers is the set of pseudo-Frobenius numbers of a numerical semigroup and, if so, to compute the set of all numerical semigroups having this set as set of pseudo-Frobenius numbers.

Type
Research Article
Copyright
© The Author(s) 2016 

References

Blanco, V. and Rosales, J. C., ‘The tree of irreducible numerical semigroups with fixed Frobenius number’, Forum Math. 25 (2013) 12491261.CrossRefGoogle Scholar
Bresinsky, H., ‘Symmetric semigroups of integers generated by 4 elements’, Manuscripta Math. 17 (1975) 205219.Google Scholar
Delgado, M., ‘intpic, a GAP package for drawing integers’, http://www.gap-system.org/.Google Scholar
Delgado, M., García-Sánchez, P. A. and Morais, J., ‘NumericalSgps, a GAP package for numerical semigroups’, version 1.0.1, 2015, http://www.gap-system.org/.CrossRefGoogle Scholar
The GAP group, ‘GAP – Groups, algorithms, programming’, version 4.7.7, 2015, http://www.gap-system.org/.Google Scholar
Komeda, J., ‘On the existence of Weierstrass points with a certain semigroup generated by 4 elements’, Tsukuba J. Math. 6 (1982) 237270.CrossRefGoogle Scholar
Robles-Pérez, A. M. and Rosales, J. C., ‘The genus, the Frobenius number, and the pseudo-Frobenius numbers of numerical semigroups with type two’, Proc. Roy. Soc. Edinburgh Sect. A, to appear.Google Scholar
Rosales, J. C. and García-Sánchez, P. A., Numerical Semigroups , Developments in Mathematics 20 (Springer, 2010).Google Scholar
Rosales, J. C., García-Sánchez, P. A., García-García, J. I. and Jiménez-Madrid, J. A., ‘Fundamental gaps in numerical semigroups’, J. Pure Appl. Algebra 189 (2004) 301313.Google Scholar