Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-g2njx Total loading time: 0.198 Render date: 2021-10-25T12:02:20.044Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Non-variational computation of the eigenstates of Dirac operators with radially symmetric potentials

Published online by Cambridge University Press:  01 January 2010

Lyonell Boulton
Affiliation:
Ceremade (UMR CNRS 7534) Université Paris-Dauphine, Place de Lattre de Tassigny, F-75775 Paris Cedex 16, France Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom (email: L.Boulton@hw.ac.uk)
Nabile Boussaid
Affiliation:
Département de Mathématiques, UFR Sciences et techniques, 16 route de Gray - 25 030, Besançon Cedex, France (email: nabile.boussaid@univ-fcomte.fr)

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss a novel strategy for computing the eigenvalues and eigenfunctions of the relativistic Dirac operator with a radially symmetric potential. The virtues of this strategy lie in the fact that it avoids completely the phenomenon of spectral pollution and it always provides two-sided estimates for the eigenvalues with explicit error bounds on both eigenvalues and eigenfunctions. We also discuss convergence rates of the method and illustrate our results with various numerical experiments.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2010

References

[1] Berthier, A. and Georgescu, V., ‘On the point spectrum of Dirac operators’, J. Funct. Anal. 71 (1987) 309338.CrossRefGoogle Scholar
[2] Betcke, T., Higham, N., Mehrmann, V., Schröder, C. and Tisseur, F., NLEVP: A collection of nonlinear eigenvalue problems. http://www.mims.manchester.ac.uk/research/numerical-analysis/nlevp.html.Google Scholar
[3] Betcke, T., Higham, N., Mehrmann, V., Schröder, C. and Tisseur, F., NLEVP: A collection of nonlinear eigenvalue problems. MIMS EPrint 2008.40, Manchester Institute for Mathematical Sciences, The University of Manchester, UK, (April 2008).Google Scholar
[4] Birman, M. and Laptev, A., ‘Discrete spectrum of the perturbed Dirac operator’, Ark. Mat. 32 (1994) 1332.CrossRefGoogle Scholar
[5] Boulton, L., ‘Limiting set of second order spectra’, Math. Comput. 75 (2006) 13671382.CrossRefGoogle Scholar
[6] Boulton, L., ‘Non-variational approximation of discrete eigenvalues of self-adjoint operators’, IMA J. Numer. Anal. 27 (2007) 102121.CrossRefGoogle Scholar
[7] Boulton, L. and Levitin, M., ‘On approximation of the eigenvalues of perturbed periodic Schrodinger operators’, J. Phys. A: Math. Theor. 40 (2007) 93199329.CrossRefGoogle Scholar
[8] Dyall, K., ‘Kinetic balance and variational bounds failure in the solution of the Dirac equation in a finite gaussian basis set’, Chem. Phys. Lett. 174 (1990) 2532.CrossRefGoogle Scholar
[9] Esteban, M., Lewin, M. and Séré, E., ‘Variational methods in relativistic quantum mechanics’, Bull. AMS 45 (2008) 535593.CrossRefGoogle Scholar
[10] Griesemer, M. and Lutgen, J., ‘Accumulation of discrete eigenvalues of the radial Dirac operator’, J. Funct. Anal. 162 (1999) 120134.CrossRefGoogle Scholar
[11] Hislop, P. D., ‘Exponential decay of two-body eigenfunctions: a review’, Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), Electron. J. Differ. Equ. Conf., vol. 4 (Southwest Texas State University, San Marcos, TX, 2000) 265288 (electronic).Google Scholar
[12] Klaus, M., ‘On the point spectrum of Dirac operators’, Helv. Phys. Acta. 53 (1980) 463482.Google Scholar
[13] Langer, H., Langer, M. and Tretter, C., ‘Variational principles for eigenvalues of block operator matrices’, Indiana Univ. Math. J. 51 (2002) 14271459.CrossRefGoogle Scholar
[14] Levitin, M. and Shargorodsky, E., ‘Spectral pollution and second-order relative spectra for self-adjoint operators’, IMA J. Numer. Anal. 24 (2004) 393416.CrossRefGoogle Scholar
[15] Schmidt, K. M., ‘Eigenvalue asymptotics of perturbed periodic Dirac systems in the slow-decay limit’, Proc. Amer. Math. Soc. 131 (2003) 12051214 (electronic).CrossRefGoogle Scholar
[16] Shargorodsky, E., ‘Geometry of higher order relative spectra and projection methods’, J. Operator Theory 44 (2000) 4362.Google Scholar
[17] Stanton, R. and Havriliak, S., ‘Kinetic balance a partial solution to the problem of variational safety in dirac calculations’, J. Chem. Phys. 81 (1984) 19101918.CrossRefGoogle Scholar
[18] Strauss, M., ‘Quadratic projection methods for approximating the spectrum of self-adjoint operators’, IMA J. Numer. Anal., to appear (2010).Google Scholar
[19] Thaller, B., The Dirac Equation (Springer, Berlin, 1992).CrossRefGoogle Scholar
[20] Triebel, H., ‘Hardy inequalities in function spaces’, Math. Bohem. 124 (1999) 123130.Google Scholar
You have Access
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Non-variational computation of the eigenstates of Dirac operators with radially symmetric potentials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Non-variational computation of the eigenstates of Dirac operators with radially symmetric potentials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Non-variational computation of the eigenstates of Dirac operators with radially symmetric potentials
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *