No CrossRef data available.
Published online by Cambridge University Press: 26 August 2016
We present a specialized point-counting algorithm for a class of elliptic curves over $\mathbb{F}_{p^{2}}$ that includes reductions of quadratic $\mathbb{Q}$-curves modulo inert primes and, more generally, any elliptic curve over $\mathbb{F}_{p^{2}}$ with a low-degree isogeny to its Galois conjugate curve. These curves have interesting cryptographic applications. Our algorithm is a variant of the Schoof–Elkies–Atkin (SEA) algorithm, but with a new, lower-degree endomorphism in place of Frobenius. While it has the same asymptotic asymptotic complexity as SEA, our algorithm is much faster in practice.