No CrossRef data available.
Article contents
Computation of Mordell–Weil bases for ordinary elliptic curves in characteristic two
Published online by Cambridge University Press: 01 August 2014
Abstract
In this paper we consider ordinary elliptic curves over global function fields of characteristic $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}2$. We present a method for performing a descent by using powers of the Frobenius and the Verschiebung. An examination of the local images of the descent maps together with a duality theorem yields information about the global Selmer groups. Explicit models for the homogeneous spaces representing the elements of the Selmer groups are given and used to construct independent points on the elliptic curve. As an application we use descent maps to prove an upper bound for the naive height of an $S$-integral point on $A$. To illustrate our methods, a detailed example is presented.
- Type
- Research Article
- Information
- Copyright
- © The Author 2014