Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-dksz7 Total loading time: 0.598 Render date: 2021-08-02T23:59:52.151Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The Alperin Weight Conjecture and Uno's Conjecture for the Baby Monster B, p Odd

Published online by Cambridge University Press:  01 February 2010

Jianbei An
Affiliation:
Department of Mathematics, University of Auckland, Auckland, New Zealand, an@math.auckland.ac.nz
R. A. Wilson
Affiliation:
Department of Mathematics The University of Birmingham Birmingham B15 2TT United Kingdom, R.A.Wilson@bham.ac.uk
Corresponding

Abstract

Suppose that p is 3, 5 or 7. In this paper, faithful permutation representations of maximal p-local subgroups are constructed, and the radical p-chains of the Baby Monster B are classified. Hence, the Alperin weight conjecture and the Uno reductive conjecture can be verified for B, the latter being a refinement of Dade's reductive conjecture and the Isaacs-Navarro conjecture.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2004

References

1. Alperin, J. L., ‘Weights for finite groups’, The Arcata Conference on Representations of Finite Groups, Proc. Sympos. Pure Math. 47 (1987) 369379.CrossRefGoogle Scholar
2. An, Jianbei, Eaton, C. W., ‘The p-local rank of a block’, J. Group Theory 3 (2000) 369380.CrossRefGoogle Scholar
3. An, Jianbei, Eaton, C. W., ‘Modular representation theory of blocks with trivial intersection defect groups’, Algebr. Represent. Theory, to appear.Google Scholar
4. An, Jianbei, Brien, E.A.O', ‘A local strategy to decide the Alperin and Dade conjectures’, J. Algebra 206 (1998) 183207.CrossRefGoogle Scholar
5. An, Jianbei, Brien, E.A.O', ‘The Alperin and Dade conjectures for the simple Fischer group Fi23’, International J. Algebra Comput. 9 (1999) 621670.CrossRefGoogle Scholar
6. Bosma, Wieb, Cannon, John, Playoust, Catherine, ‘The MAGMA algebra system I: the user language’, J. Symbolic Comput. 24 (1997) 235265.CrossRefGoogle Scholar
7. Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of finite groups (Clarendon Press, Oxford, 1985).Google Scholar
8. Dade, E. C., ‘Counting characters in blocks Counting characters in blocks’, I, Invent. Math. 109 (1992) 187210.CrossRefGoogle Scholar
9. Dade, E. C., ‘Counting characters in blocksCounting characters in blocksII.9, Representation theory of finite groups (Columbus, OH, 1995), Ohio State Univ. Math. Res. Inst. Publ. 6 (de Gruyter, Berlin, (1997) 4559.Google Scholar
10. The GAP Team, ‘GAP - Groups, Algorithms, and Programming’, Version 4. Lehrstuhl D für Mathematik, RWTH Aachen, and School of Mathematical and Computational Sciences, University of St Andrews (2000).Google Scholar
11. , G.Hiss, Lux, K., Brauer trees of sporadic groups (Oxford Science Publications, 1989).Google Scholar
12. Isaacs, I. M., Navarro, G., ‘New refinements of the McKay conjecture for arbitrary finite groups’, Ann of Math 156 (2002) 333344.CrossRefGoogle Scholar
13. Knörr, R., ‘On the vertices of irreducible modules’, Ann. of Math. 110(1979) 487499.CrossRefGoogle Scholar
14. Linton, S., Parker, R., Wilson, R., ‘Computer construction of the Monsters’, J. Group Theory 1 (1998) 307337.Google Scholar
15. Uno, K., ‘Conjectures on character degrees for the simple Thompson group’, Osaka J. Math., to appear.Google Scholar
16. Wilson, Robert A., ‘Some subgroups of baby monster’, Invent. Math. 89 (1987) 197218.CrossRefGoogle Scholar
17. Wilson, R. A. et al. , ‘ATLAS of finite group representations’, http://www.mat.bham.ac.uk/atlas.Google Scholar
You have Access
8
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Alperin Weight Conjecture and Uno's Conjecture for the Baby Monster B, p Odd
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Alperin Weight Conjecture and Uno's Conjecture for the Baby Monster B, p Odd
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Alperin Weight Conjecture and Uno's Conjecture for the Baby Monster B, p Odd
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *