Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T21:39:26.032Z Has data issue: false hasContentIssue false

Selective feeding by gastropods in Lobaria scrobiculata allows quantification of intrathalline anatomical layers

Published online by Cambridge University Press:  03 August 2010

Yngvar Gauslaa
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, NO-1432-Ås, Norway. Email: yngvar.gauslaa@umb.no
Per Larsson
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, NO-1432-Ås, Norway. Email: yngvar.gauslaa@umb.no
Johan Asplund
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, NO-1432-Ås, Norway. Email: yngvar.gauslaa@umb.no

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Short Communications
Copyright
Copyright © British Lichen Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asplund, J. & Gauslaa, Y. (2008) Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests. Oecologia 155: 9399.CrossRefGoogle ScholarPubMed
Asplund, J. & Gauslaa, Y. (2010) The gastropod Arion fuscus prefers cyanobacterial to green algal parts of the tripartite lichen Nephroma arcticum due to low chemical defence. Lichenologist 42: 113117.CrossRefGoogle Scholar
Asplund, J., Larsson, P., Vatne, S. & Gauslaa, Y. (2010a) Gastropod grazing shapes the vertical distribution of epiphytic lichens in forest canopies. Journal of Ecology 98: 218225.CrossRefGoogle Scholar
Asplund, J., Solhaug, K. A. & Gauslaa, Y. (2010b) Optimal defense – snails avoid reproductive parts of the lichen Lobaria scrobiculata due to allocaton of secondary compounds. Ecology (in press).CrossRefGoogle Scholar
Baur, B., Fröberg, L., Baur, A., Guggenheim, R. & Haase, M. (2000) Ultrastructure of snail grazing damage to calcicolous lichens. Nordic Journal of Botany 20: 119128.CrossRefGoogle Scholar
Fahselt, D. & Alstrup, V. (1997) Visualization of extracellular deposits in recent and subfossil Umbilicaria hyperborea. Lichenologist 29: 547557.CrossRefGoogle Scholar
Fröberg, L., Baur, A. & Baur, B. (1993) Differential herbivore damage to calcicolous lichens by snails. Lichenologist 25: 8395.CrossRefGoogle Scholar
Gauslaa, Y. (2008) Mollusc grazing may constrain the ecological niche of the old forest lichen Pseudocyphellaria crocata. Plant Biology 10: 711717.CrossRefGoogle ScholarPubMed
Gauslaa, Y. & Solhaug, K. A. (1998) The significance of thallus size for the water economy of the cyanobacterial old forest lichen Degelia plumbea. Oecologia 116: 7684.CrossRefGoogle ScholarPubMed
Gauslaa, Y., Lie, M., Solhaug, K. A. & Ohlson, M. (2006) Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 147: 406416.CrossRefGoogle ScholarPubMed
Gauslaa, Y., Palmqvist, K., Solhaug, K. A., Hilmo, O., Holien, H., Nybakken, L. & Ohlson, M. (2009) Size-dependent growth in two old-growth associated macrolichen species. New Phytologist 181: 683692.CrossRefGoogle ScholarPubMed
Hesbacher, S., Giez, I., Embacher, G., Fiedler, K., Max, W., Trawöger, A., Türk, R., Lange, O. L. & Proksch, P. (1995) Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera). Journal of Chemical Ecology 21: 20792089.CrossRefGoogle ScholarPubMed
Lange, O. L. & Kilian, E. (1985) Reaktiverung der Photosynthese trockener Flechten durch Wasserdampfaufnahme aus dem Luftraum: Artsspezifisch unterschiedliches Verhalten. Flora 176: 723.CrossRefGoogle Scholar
MacKenzie, T. B. D. & Campbell, D. A. (2001) Evidence for wavelength-dependent light screening of cyanobionts and phycobionts in Lobaria during dehydration. Symbiosis 30: 5770.Google Scholar
Máguas, C. & Brugnoli, E. (1996) Spatial variation in carbon isotope discrimination across the thalli of several lichen species. Plant Cell and Environment 19: 437446.CrossRefGoogle Scholar
Máguas, C., Griffiths, H. & Broadmeadow, M. S. J. (1995) Gas-exchange and carbon-isotope discrimination in lichens – evidence for interactions between CO2-concentrating mechanisms and diffusion limitation. Planta 196: 95102.CrossRefGoogle Scholar