Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-20T10:02:14.308Z Has data issue: false hasContentIssue false

Catillaria flexuosa (Catillariaceae), a new lichen species described from the Netherlands

Published online by Cambridge University Press:  19 March 2021

Pieter P. G. van den Boom*
Affiliation:
Arafura 16, 5691 JA, Son, the Netherlands
Pablo Alvarado
Affiliation:
Alvalab, Dr Fernando Bongera St., Severo Ochoa Bldg S1.04, 33006Oviedo, Spain
*
Author for correspondence: Pieter P. G. van den Boom. E-mail: pvdboom@kpnmail.nl

Abstract

A new lichen species is described from specimens growing on Fraxinus trees north of Eindhoven (the Netherlands). Morphological and genetic studies suggest that the new species belongs in the genus Catillaria, and the name Catillaria flexuosa is proposed because of its flexuose apothecia. The new species is characterized by the relatively large apothecia (up to 0.9 mm diam.) and relatively thick, knobby to ±subsquamulose, greenish, thallus. Due to their similar morphological features, C. flexuosa can be easily confused with Catillaria chalybeia, C. fungoides or C. nigroclavata, so it is therefore compared with these species. In addition, Arthonia epiphyscia is reported being a very rare species in the Netherlands.

Type
Standard Papers
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the British Lichen Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, SF, Gish, W, Miller, W, Myers, EW and Lipman, DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Andersen, HL and Ekman, S (2005) Disintegration of the Micareaceae (lichenized Ascomycota): a molecular phylogeny based on mitochondrial rDNA sequences. Mycological Research 109, 2130.CrossRefGoogle ScholarPubMed
Bendiksby, M and Timdal, E (2013) Molecular phylogenetics and taxonomy of Hypocenomyce sensu lato (Ascomycota: Lecanoromycetes): extreme polyphyly and morphological/ecological convergence. Taxon 62, 940956.CrossRefGoogle Scholar
Castresana, J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540552.CrossRefGoogle ScholarPubMed
Cochrane, G, Karsch-Mizrachi, I and Nakamura, Y on behalf of the International Nucleotide Sequence Database Collaboration (2011) The International Nucleotide Sequence Database Collaboration. Nucleic Acids Research 39, D15D18.CrossRefGoogle ScholarPubMed
Cubeta, MA, Echandi, E, Abernethy, T and Vilgalys, R (1991) Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 81, 13951400.CrossRefGoogle Scholar
Diederich, P, Ertz, D, Stapper, N, Sérusiaux, E, Van den Broeck, D, van den Boom, P and Ries, C (2020) The lichens and lichenicolous fungi of Belgium, Luxembourg and northern France. [WWW resource] URL http://www.lichenology.info [Accessed 3 January 2020].Google Scholar
Ekman, S, Andersen, HL and Wedin, M (2008) The limitations of ancestral state reconstruction and the evolution of the ascus in the Lecanorales (lichenized Ascomycota). Systematic Biology 57, 141156.CrossRefGoogle Scholar
Elix, JA and McCarthy, PM (2018) Ten new lichen species (Ascomycota) from Australia. Australasian Lichenology 82, 2059.Google Scholar
Gardes, M and Bruns, TD (1993) ITS primers with enhanced specificity for Basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2, 113118.CrossRefGoogle ScholarPubMed
Gaya, E, Högnabba, F, Holguin, Á, Molnar, K, Fernández-Brime, S, Stenroos, S, Arup, U, Søchting, U, van den Boom, P and Lücking, R (2012) Implementing a cumulative supermatrix approach for a comprehensive phylogenetic study of the Teloschistales (Pezizomycotina, Ascomycota). Molecular Phylogenetics and Evolution 63, 374387.CrossRefGoogle Scholar
Guttová, A, Zozomová-Lihová, J, Timdal, E, Kučera, J, Slovák, M, Piknová, K and Paoli, L (2014) First insights into genetic diversity and relationships of European taxa of Solenopsora (Catillariaceae, Ascomycota) with implications for their delimitation. Botanical Journal of the Linnean Society 176, 203223.Google Scholar
Hafellner, J (1984) Studien in Richtung einer natürlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae. Beiheft zur Nova Hedwigia 79, 241371.Google Scholar
Kantvilas, G and van den Boom, PPG (2013) A new species of Catillaria (lichenised Ascomycetes: Catillariaceae) from southern Australia. Journal of the Adelaide Botanic Gardens 26, 58.Google Scholar
Kelly, LJ, Hollingsworth, PM, Coppins, BJ, Ellis, CJ, Harrold, P, Tosh, J and Yahr, R (2011) DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytologist 191, 288300.CrossRefGoogle Scholar
Kilias, R (1981) Revision gesteinsbewohnender Sippen der Flechtengattung Catillaria Massal. in Europa (Lecanorales, Lecideaceae). Herzogia 5, 209448.Google Scholar
Kistenich, S, Timdal, E, Bendiksby, M and Ekman, S (2018) Molecular systematics and character evolution in the lichen family Ramalinaceae (Ascomycota: Lecanorales). Taxon 67, 871904.CrossRefGoogle Scholar
Kondratyuk, S, Lőkös, L, Tschabanenko, S, Moniri, MH, Farkas, E, Wang, X, Oh, S-O and Hur, J-S (2016) New and noteworthy lichen-forming and lichenicolous fungi: 5. Acta Botanica Hungarica 58, 319396.CrossRefGoogle Scholar
Lee, JS, Lee, HK, Hur, J-S, Andreev, M and Hong, SG (2008) Diversity of the lichenized fungi in King George Island, Antarctica, revealed by phylogenetic analysis of partial large subunit rDNA sequences. Journal of Microbiology and Biotechnology 18, 10161023.Google Scholar
Lendemer, JC and Hodkinson, BP (2013) A radical shift in the taxonomy of Lepraria s.l.: Molecular and morphological studies shed new light on the evolution of asexuality and lichen growth form diversification. Mycologia 105, 9941018.CrossRefGoogle ScholarPubMed
McCarthy, PM and Elix, JA (2017) Five new lichen species (Ascomycota) and a new record from southern New South Wales, Australia. Telopea 20, 335353.Google Scholar
Miadlikowska, J, Kauff, F, Högnabba, F, Oliver, JC, Molnár, K, Fraker, E, Gaya, E, Hafellner, J, Hofstetter, V, Gueidan, C, et al. (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution 79, 132168.CrossRefGoogle ScholarPubMed
Mullis, K and Faloona, FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology 155, 335350.CrossRefGoogle Scholar
Murray, MG and Thompson, WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8, 43214325.CrossRefGoogle ScholarPubMed
Prieto, M and Wedin, M (2016) Phylogeny, taxonomy and diversification events in the Caliciaceae. Fungal Diversity 82, 221238.CrossRefGoogle Scholar
Næsborg R, Reese, Ekman, S and Tibell, L (2007) Molecular phylogeny of the genus Lecania (Ramalinaceae, lichenized Ascomycota). Mycological Research 111, 581591.CrossRefGoogle Scholar
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA, and Huelsenbeck, JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Smith, CW, Aptroot, A, Coppins, BJ, Fletcher, A, Gilbert, OL, James, PW and Wolseley, PA (eds) (2009) The Lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Stamatakis, A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 13121313.CrossRefGoogle ScholarPubMed
Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M and Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Tretiach, M and Hafellner, J (1998) A new species of Catillaria from coastal Mediterranean regions. Lichenologist 30, 221229.CrossRefGoogle Scholar
van den Boom, PPG (2004) A long-term inventory of lichens and lichenicolous fungi of the Strabrechtse Heide and Lieropse Heide in Noord-Brabant, The Netherlands. Österreichische Zeitschrift für Pilzkunde 13, 131151.Google Scholar
van den Boom, PPG (2010) Lichens and lichenicolous fungi from Lanzarote (Canary Islands), with the descriptions of two new species. Cryptogamie, Mycologie 31 , 183199.Google Scholar
van den Boom, PPG (2015) Lichens and lichenicolous fungi from graveyards of the area of Eindhoven (the Netherlands), with the description of two new species. Annalen des Naturhistorischen Museums in Wien. Serie B, Botanik und Zoologie 117, 245276.Google Scholar
van den Boom, PPG and Etayo, J (2001) Two new sorediate species of lichens in the Catillariaceae from the Iberian Peninsula. Lichenologist 33, 103110.CrossRefGoogle Scholar
van den Boom, P and van den Boom, B (2009) Diversity of lichens and lichenicolous fungi in a primeval heathland and adjacent managed forest in southern Netherlands (Groote Heide and 't Leenderbos). Österreichische Zeitschrift für Pilzkunde 18, 2545.Google Scholar
Vilgalys, R and Hester, M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172, 42384246.CrossRefGoogle ScholarPubMed
Waters, DP and Lendemer, JC (2019) The lichens and allied fungi of Mercer County, New Jersey. Opuscula Philolichenum 18, 1751.Google Scholar
White, TJ, Bruns, TD, Lee, S and Taylor, JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, MA, Gelfand, DH, Sninsky, J and White, TJ (eds), PCR Protocols: a Guide to Methods and Applications. San Diego: Academic Press, pp. 315–322.Google Scholar