Hostname: page-component-758b78586c-t6f8b Total loading time: 0 Render date: 2023-11-29T02:14:23.141Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Population genetics in the homothallic lichen-forming ascomycete Xanthoria parietina

Published online by Cambridge University Press:  01 October 2010

Beatriz ITTEN
Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland. Email:
Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland. Email:


The genetic diversity within and among populations of Xanthoria parietina was studied at the subspecific level with a fingerprinting technique (RAPD-PCR) applied to sterile cultured multispore isolates, each being derived from a single apothecium. Populations from coastal, rural and urban sites from NW, SW and central France and from NE Switzerland were investigated. Between 1 and 8 microsites of a few decimetres square, each comprising 13 to 27 thalli of X. parietina, were analysed per population. A total of 132 isolates from epiphytic and 3 isolates from epilithic specimens were investigated. Phenotypic variation was recorded among some of the thalli in the field and among sterile cultured isolates in the laboratory. A high diversity of genotypes was observed, even among thalli growing side by side in phenotypically homogenous populations. An average of 73·5 % polymorphism was found in all samples. As shown with Principal Coordinates Analysis (PCO), most of the genetic variation (90%) resided within, not among, populations. As X. parietina had previously been shown with molecular and fingerprinting techniques to be homothallic, the potential genetic background of this diversity is discussed. Intense genotype rather than gene (allele) flow seems to be an important element in X. parietina populations.

Research Article
Copyright © British Lichen Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Armstrong, R. A. (1993) The growth of six saxicolous lichens transplanted to lime-rich and lime-poor substrates in South Gwynedd, Wales. Symbiosis 15: 257267.Google Scholar
Brodo, I. M., Lewis, C. & Craig, B. (2007) Xanthoria parietina, a coastal lichen, rediscovered in Ontario. Northeastern Naturalist 14: 300306.Google Scholar
Brodo, I. M., Sharnoff, S. D. & Sharnoff, S. (2001) Lichens of North America. New Haven, Connecticut: Yale University Press.Google Scholar
Bubrick, P., Galun, M. & Frensdorff, A. (1984) Observations on free-living Trebouxia de Puymaly and Pseudotrebouxia Archibald, and evidence that both symbionts from Xanthoria parietina (L.)Th.Fr. can be found free-living in nature. New Phytologist 97: 455462.Google Scholar
Culberson, C. F. & Ammann, K. (1979) Standardmethode zur Dünnschichtchromatographie von Flechtensubstanzen. Herzogia 5: 124.Google Scholar
Czeczuga, B. (1983) Mutatoxanthin, the dominant carotenoid in lichens of Xanthoria genus. Biochemical Systematics and Ecology 11: 329331.Google Scholar
Deason, T. R. & Bold, H. C. (1960) Phycological Studies I.. University of Texas Publication No. 6022.Google Scholar
Eichenberger, C. (2007) Molecular phylogenies of representatives of Xanthoria and Xanthomendoza (lichen-forming Ascomycetes). Ph.D. thesis, University of Zürich. Scholar
Excoffier, L., Smouse, P. E. & Quattro, J. M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479491.Google Scholar
Galloway, D. J. (1985) Flora of New Zealand Lichens. Wellington, New Zealand: P. D. Hasselberg, Government Printer.Google Scholar
Honegger, R. (1984) Scanning electron microscopy of the contact site of conidia and trichogynes in Cladonia furcata. Lichenologist 16: 1119.Google Scholar
Honegger, R. (1993) A simple outdoor culturing system for the foliose macrolichens Xanthoria parietina (L.) Th. Fr. and Parmelia sulcata Taylor. Botanica Helvetica 103: 223229.Google Scholar
Honegger, R. (1995) Experimental studies with foliose macrolichens: fungal responses to spatial disturbance at the organismic level and to spacial problems at the cellular level. Canadian Journal of Botany 73: 569578.Google Scholar
Honegger, R. (1996) Experimental studies on growth and regenerative capacity in the foliose lichen Xanthoria parietina. New Phytologist 133: 573581.Google Scholar
Honegger, R. (1998) The lichen symbiosis – what is so spectacular about it? Lichenologist 30: 193212.Google Scholar
Honegger, R. & Kutasi, V. (1990) Anthraquinone production in three aposymbiotically cultured teloschistalean lichen mycobionts: The role of the carbon source. In Endocytobiology IV (Nardon, P., Gianinazzi-Pearson, V., Grenier, A. M., Margulis, L., & Smith, D. C., eds): 175178. Paris: INRA.Google Scholar
Honegger, R. & Scherrer, S. (2008) Sexual reproduction in lichen-forming ascomycetes. In Lichen Biology (Nash, T. H., ed): 94103. Cambridge: Cambridge University Press.Google Scholar
Honegger, R., Conconi, S. & Kutasi, V. (1996) Field studies on growth and regenerative capacity in the foliose macrolichen Xanthoria parietina (Teloschistales, Ascomycotina). Botanica Acta 109: 187193.Google Scholar
Honegger, R., Zippler, U., Gansner, H. & Scherrer, S. (2004a) Mating systems in the genus Xanthoria, (lichen-forming ascomycetes). Mycological Research 108: 480488.Google Scholar
Honegger, R., Zippler, U., Scherrer, S. & Dyer, P. (2004b) Genetic diversity in Xanthoria parietina (L.) Th. Fr. (lichen-forming ascomycete) from worldwide locations. Lichenologist 36: 381390.Google Scholar
Janex-Favre, M. C. & Ghaleb, I. (1986) L' ontogénie et la structure des apothécies du Xanthoria parietina (L.) Beltr. (Discolichen). Cryptogamie, Bryologie et Lichénologie 7: 457478.Google Scholar
Lindblom, L. (1997) The genus Xanthoria (Fr.) Th.Fr. in North America. Journal of the Hattori Botanical Laboratory 83: 75172.Google Scholar
Lindblom, L. & Ekman, S. (2006) Genetic variation and population differentiation in the lichen-forming ascomycete Xanthoria parietina on the island Storfosna, central Norway. Molecular Ecology 15: 15451559.Google Scholar
Lindblom, L. & Ekman, S. (2007) New evidence corroborates population differentiation in Xanthoria parietina. Lichenologist 39: 259271.Google Scholar
Marshall, W. A. (1996) Aerial dispersal of lichen soredia in the maritime Antarctic. New Phytologist 134: 523530.Google Scholar
McCune, B. (2004) Xanthoria in the Pacific Northwest. Scholar
McDonald, B. A. & Linde, C. (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology 40: 349379.Google Scholar
Meier, F. A., Scherrer, S. & Honegger, R. (2002) Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biological Journal of the Linnean Society 76: 259268.Google Scholar
Meunier, J.-R. & Grimont, P. A. D. (1993) Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Research in Microbiology 144: 373379.Google Scholar
Muñoz, J., Felicísmo, A., Cabezas, F., Burgaz, A. & Martínez, I. (2004) Wind as long-distance dispersal vehicle in the Southern Hemisphere. Science 304: 11441147.Google Scholar
Murtagh, G. J., Dyer, P. S. & Crittenden, P. D. (2000) Reproductive systems – Sex and the single lichen. Nature 404: 564.Google Scholar
Murtagh, G. J., Dyer, P. S., Furneaux, P. A. & Crittenden, P. D. (2002) Molecular and physiological diversity in the bipolar lichen-forming fungus Xanthoria elegans. Mycological Research 106: 12771286.Google Scholar
Nei, M. (1972) Genetic distance between populations. The American Naturalist 106: 283292.Google Scholar
Nei, M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583590.Google Scholar
Ott, S. (1987) Sexual reproduction and developmental adaptations in Xanthoria parietina. Nordic Journal of Botany 7: 219228.Google Scholar
Park, S.-Y., Milgroom, M. G., Han, S. S., Kang, S. & Lee, Y.-H. (2008) Genetic differentiation of Magnaporthe oryzae populations from scouting plots and commercial rice fields in Korea. Phytopathology 98: 436442.Google Scholar
Peakall, R. & Smouse, P. E. (2006) GenAlEx 6: Genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288295.Google Scholar
Podani, J. (1993) Syn-Tax-pc. Computer Programs for Multivariate Data Analysis in Ecology and Systematics, version 5.0. Budapest: Sciencia Publishing.Google Scholar
Rogers, R. W. (1992) Lichen ecology and biogeography. Flora of Australia 54: 3042.Google Scholar
Sanders, W. B. (2005) Observing microscopic phases of lichen life cycles on transparent substrata placed in situ. Lichenologist 37: 373382.Google Scholar
Scherrer, S. & Honegger, R. (2003) Inter- and intraspecific variation of homologous hydrophobin (H1) gene sequences among Xanthoria spp. (lichen-forming ascomycetes). New Phytologist 158: 375389.Google Scholar
Scherrer, S., Zippler, U. & Honegger, R. (2005) Characterisation of the mating-type locus in the genus Xanthoria (lichen-forming ascomycetes, Lecanoromycetes). Fungal Genetics and Biology 42: 976988.Google Scholar
Seaward, M. R. D. (2008) Environmental role of lichens. In Lichen Biology (Nash, T. H., ed): 274298. Cambridge: Cambridge University Press.Google Scholar
Søchting, U. (1997) Two major anthraquinone chemosyndromes in Teloschistaceae. Bibliotheca Lichenologica 68: 135144.Google Scholar
Tormo, R., Recio, D., Silva, I. & Muñoz, A. (2001) A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. European Journal of Phycology 36: 385390.Google Scholar
Tredway, L. P., Stevenson, K. L. & Burpee, L. L. (2003) Mating type distribution and fertility status in Magnaporthe grisea populations from turfgrasses in Georgia. Plant Disease 87: 435441.Google Scholar
Turgeon, B. & Yoder, O. (2000) Proposed nomenclature for mating type genes in filamentous ascomycetes. Fungal Genetics and Biology 31: 15.Google Scholar
Viji, G. & Uddin, W. (2002) Distribution of mating type alleles and fertility status of Magnaporthe grisea causing gray leaf spot of perennial ryegrass and St. Augustine grass turf. Plant Disease 86: 827832.Google Scholar
Weir, B. S. (1996) Genetic Data Analysis II: Methods for Discrete Population Genetic Data. Sunderland, MA: Sinauer.Google Scholar
Zeigler, R. S., Scott, R. P., Leung, H., Bordeos, A. A., Kumar, J. & Nelson, R. J. (1997) Evidence of parasexual exchange of DNA in the rice blast fungus challenges its exclusive clonality. Phytopathology 87: 284294.Google Scholar