Published online by Cambridge University Press: 08 October 2012
In our earlier work, we demonstrated the presence of the multicopper oxidases tyrosinase and laccase in the cell walls of lichens from the Peltigerales, while these enzymes appeared to be absent in lichens from other orders. Likely roles for tyrosinase in lichens include melanin synthesis, the generation of quinones needed for laccase-mediated redox cycling, and the removal of harmful reactive molecules formed by this cycling. Non-Peltigeralean lichens will not need tyrosinase to detoxify laccase-generated radicals. However, many non-Peltigeralean lichens are often heavily melanized. Apparent absence of tyrosinase activity in these species prompted us to suggest that, in these lichens, melanins are probably synthesized by the polyketide pathway, which does not involve tyrosinase. Here, we surveyed intracellular tyrosinase activity in thallus homogenates from a range of lichens. Results showed that Peltigeralean species generally have much higher activities than species from other orders. However, the non-Peltigeralean lichen Dermatocarpon miniatum displays significant tyrosinase activity. In D. miniatum, tyrosinase differs from the corresponding enzyme from Peltigeralean lichens with respect to cellular location, substratum specificity, stability and pH optimum. Furthermore, unlike Peltigeralean lichens, in D. miniatum tyrosinase activity increased strongly following the rehydration of dry thalli. These differences are possibly a consequence of the role of tyrosinase in melanin synthesis rather than laccase-mediated redox cycling.