Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-2z7pd Total loading time: 0.227 Render date: 2021-05-08T14:28:20.589Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Genetic diversity of the lichen-forming alga, Diplosphaera chodatii, in North America and Europe

Published online by Cambridge University Press:  31 October 2013

Kyle M. FONTAINE
Affiliation:
Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2. Email: pierceyn@cc.umanitoba.ca
Elfie STOCKER-WÖRGÖTTER
Affiliation:
Department of Organismic Biology, Ecology and Diversity of Plants, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria
Tom BOOTH
Affiliation:
Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2. Email: pierceyn@cc.umanitoba.ca
Michele D. PIERCEY-NORMORE
Affiliation:
Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2. Email: pierceyn@cc.umanitoba.ca
Corresponding
E-mail address:

Abstract

Dermatocarpon luridum is a subaquatic lichen which is distributed within temperate climatic zones around the world. It colonizes rock substrata along the shoreline of lakes and rivers of watersheds that regularly experience water level fluctuations. The mycobiont produces perithecia with small, simple spores that are thought to be wind dispersed. The photobiont, Diplosphaera chodatii, occurs both free-living and lichenized but little is known about its distribution and dispersal. The goal of this study was to compare the population structure of the photobiont from lakes and rivers in central North America with those of Europe. Specimens were collected in Manitoba, Canada and Austria. Population structure of the algal symbiont was assessed using the internal transcribed spacer (ITS) of ribosomal DNA (rDNA) and actin gene sequences. Results showed that genetic diversity and gene flow was high within local populations, but gene flow was low between continental populations. Low levels of gene flow between the most distant populations support the isolation-by-distance theory. The photobiont on both continents is also reported to be the photobiont for other lichen species contributing to photobiont availability for D. luridum.

Type
Articles
Copyright
Copyright © British Lichen Society 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Beck, A. (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist 31: 501510.CrossRefGoogle Scholar
Bohonak, A. J. (2002) IBD (Isolation-by-distance): a program for analyses of isolation-by-distance. Journal of Heredity 93: 153154.CrossRefGoogle ScholarPubMed
Casteleyn, G., Evans, K. M., Backeljau, T., D'hondt, S., Chepurnov, V. A., Sabbe, K. & Vyverman, W. (2009) Lack of population genetic structuring in the marine planktonic diatom Pseudo-nitzschia pungens (Bacillariophyceae) in a heterogeneous area in the Southern Bight of the North Sea. Marine Biology 156: 11491158.CrossRefGoogle Scholar
Clement, M., Posada, D. & Crandall, K. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 16571660.CrossRefGoogle ScholarPubMed
Doering, M. & Piercey-Normore, M. D. (2009) Genetically divergent algae shape an epiphytic lichen community on Jack Pine in Manitoba. Lichenologist 41: 6980.CrossRefGoogle Scholar
Domaschke, S., Fernández-Mendoza, F., García, M. A., Martín, M. P. & Printzen, C. (2012) Low genetic diversity in Antarctic populations of the lichen-forming ascomycete Cetraria aculeata and its photobiont. Polar Research 31: 17353, 1–13.CrossRefGoogle Scholar
Evans, K. M., Wortley, A. H., Simpson, G. E., Chepurnov, V. A. & Mann, D. G. (2008) A molecular systematics approach to explore diversity within the Sellaphora pupula species complex (Bacillariophyta). Journal of Phycology 44: 215231.CrossRefGoogle Scholar
Excoffier, L., Smouse, P. E. & Quattro, J. M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479491.Google ScholarPubMed
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783791.CrossRefGoogle ScholarPubMed
Fernández-Mendoza, F., Domaschke, S., García, M. A., Jordan, P., Martín, M. P. & Printzen, C. (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata . Molecular Ecology 20: 12081232.CrossRefGoogle ScholarPubMed
Finlay, B. J. (2002) Global dispersal of free-living microbial eukaryote species. Science 296: 10611063.CrossRefGoogle ScholarPubMed
Flechtner, V. R. (1998) Enigmatic desert soil algae. In Enigmatic Microorganisms and Life in Extreme Environments (Seckbach, J., ed.): 233241. London: Kluwer Academic Publishers.Google Scholar
Flechtner, V. R., Johansen, J. R. & Belnap, J. (2008) The biological soil crusts of the San Nicolas Island: enigmatic algae from a geographically isolated ecosystem. Western North American Naturalist 68: 405436.CrossRefGoogle Scholar
Foissner, W. (2008) Protist diversity and distribution: some basic considerations. Biodiversity and Conservation 17: 235242.CrossRefGoogle Scholar
Fontaine, K. M., Beck, A., Stocker-Wörgötter, E. & Piercey-Normore, M. D. (2012) Photobiont relationships and phylogenetic history of Dermatocarpon luridum var. luridum and related Dermatocarpon species. Plants 1: 3960.CrossRefGoogle ScholarPubMed
Francisco de Oliveira, P. M., Timsina, B. & Piercey-Normore, M. D. (2012) Diversity of Ramalina sinensis and its photobiont in local populations. Lichenologist 44: 649660.CrossRefGoogle Scholar
Galloway, D. J. (2008) Lichen biogeography. In Lichen Biology, 2nd Edition (Nash, T. H. III, ed.): 199216. Cambridge: Cambridge University Press.Google Scholar
Grande, F. D., Widmer, I., Wagner, H. H. & Scheidegger, C. (2012) Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Molecular Ecology 21: 31593172.CrossRefGoogle Scholar
Grube, M., DePriest, P. T., Gargas, A. & Hafellner, J. (1995) DNA isolation from lichen ascomata. Mycological Research 99: 13211324.CrossRefGoogle Scholar
Handa, S., Nakahara, M., Nakano, T., Itskovich, V. B. & Masuda, Y. (2001) Aerial algae from southwestern area of Lake Baikal. Hikobia 13: 463472.Google Scholar
Hanski, I. (1997) Metapopulation biology: from concepts and observations to predictive models. In Metapopulation Biology: Ecology, Genetics, and Evolution (Hanski, I. & Gilpin, M. E., eds): 6991. University of California, San Diego: Academic Press.CrossRefGoogle Scholar
Hill, D. J. (2009) Asymmetric co-evolution in the lichen symbiosis caused by a limited capacity for adaptation in the photobiont. Botanical Review 75: 326338.CrossRefGoogle Scholar
Högberg, N., Kroken, S., Thor, G. & Taylor, J. W. (2002) Reproductive mode and genetic variation suggest a North American origin of European Letharia vulpina . Molecular Ecology 11: 11911196.CrossRefGoogle ScholarPubMed
Hommersand, M. H. & Fredericq, S. (2003) Biogeography of the marine red algae of the South African West Coast: a molecular approach. In Proceedings of the XVIIth International Seaweed Symposium, 2003 (Chapman, A. R., Anderson, R. J., Vreeland, V. J. & Davison, I. R., eds): 325336. Oxford: Oxford University Press.Google Scholar
Kroken, S. & Taylor, J. W. (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia . Bryologist 103: 645660.CrossRefGoogle Scholar
Lindblom, L. (2009) Sample size and haplotype richness in population samples of the lichen-forming ascomycete Xanthoria parietina . Lichenologist 41: 529535.CrossRefGoogle Scholar
Lukešová, A. & Hoffmann, L. (1996) Soil algae from acid rain impacted forest areas of the Krušné hory Mts. 1. Algal communities. Vegetatio 125: 123136.CrossRefGoogle Scholar
Luo, W., Pflugmacher, S., Pröschold, T., Walz, N. & Krienitz, L. (2006) Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist 157: 315323.CrossRefGoogle Scholar
Magurran, A. E. (2004) Measuring Biological Diversity. Oxford: Blackwell Publishing.Google Scholar
Ohmura, Y., Kawachi, M., Kasaie, F., Watanabe, M. M. & Takeshita, S. (2006) Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109: 4359.CrossRefGoogle Scholar
Palice, Z. & Printzen, C. (2004) Genetic variability in tropical and temperate populations of Trapeliopsis glaucolepidea: evidence against long-range dispersal in a lichen with disjunct distribution. Mycotaxon 90: 4354.Google Scholar
Peakall, R. & Smouse, P. E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288295.CrossRefGoogle Scholar
Peakall, R. & Smouse, P. E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28: 25372539.CrossRefGoogle ScholarPubMed
Peksa, O. & Skaloud, P. (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Molecular Ecology 20: 39363948.CrossRefGoogle Scholar
Piercey-Normore, M. D. (2004) Selection of algal genotypes by three species of lichen fungi in the genus Cladonia . Canadian Journal of Botany 82: 947961.CrossRefGoogle Scholar
Piercey-Normore, M. D. (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii . New Phytologist 169: 331344.CrossRefGoogle ScholarPubMed
Printzen, C., Ekman, S. & Tønsberg, T. (2003) Phylogeography of Cavernularia hultenii: evidence for slow genetic drift in a widely disjunct lichen. Molecular Ecology 12: 14731486.CrossRefGoogle Scholar
Rindi, F., Allali, H. A., Lam, D. W. & López-Bautista, J. M. (2009) An overview of the biodiversity and biogeography of terrestrial green algae. In Biodiversity Hotspots (Maletta, S. & Rescigno, V., eds): 105122. New York: Nova Science Publishers, Inc. Google Scholar
Slatkin, M. (1994) Gene flow and population structure. In Ecological Genetics (Real, L. A., ed): 317. Princeton, New Jersey: Princeton University Press.Google Scholar
Sluiman, H. J., Kouwets, F. A. C. & Blommers, P. C. J. (1989) Classification and definition of cytokinetic patterns in green algae: sporulation versus (vegetative) cell division. Archiv für Protistenkunde 137: 277290.CrossRefGoogle Scholar
Soudek, D. Jr & Robinson, G. G. C. (1983) Electrophoretic analysis of the species and population structure of the diatom Asterionella formosa . Canadian Journal of Botany 61: 418433.CrossRefGoogle Scholar
Stocker-Wörgötter, E. (2002) Resynthesis of photosymbiodemes. In Protocols in Lichenology: Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring (Kranner, I., Beckett, R. P. & Varma, A. K., eds): 4760. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Stocker-Wörgötter, E. & Hager, A. (2008) Culture methods for lichens and lichen symbionts. In Lichen Biology (Nash, T. H. III, ed.): 353363. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stocker-Wörgötter, E. & Türk, R. (1989) The resynthesis of thalli of Dermatocarpon miniatum under laboratory conditions. Symbiosis 7: 3750.Google Scholar
Swofford, D. L. (2003) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 27312739.CrossRefGoogle ScholarPubMed
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24: 48764882.CrossRefGoogle Scholar
Thüs, H., Muggia, L., Pérez-Ortega, S., Favero-Longo, S., Joneson, S., O'Brien, H., Nelsen, M. P., Duque-Thüs, R., Grube, M., Friedl, T., et al. (2011) Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). European Journal of Phycology 46: 399415.CrossRefGoogle Scholar
Voytsekhovich, A., Dymytrova, L. & Nadyeina, O. (2011) Photobiont composition of some taxa of the genera Micarea and Placynthiella (Lecanoromycetes, lichenized Ascomycota) from Ukraine. Folia Cryptogamica Estonica 48: 135148.Google Scholar
Walser, B. & Haag, C. R. (2012) Strong intraspecific variation in genetic diversity and genetic differentiation in Daphnia magna: the effects of population turnover and population size. Molecular Ecology 21: 851861.CrossRefGoogle ScholarPubMed
Walser, J-C., Holderegger, R., Gugerli, F., Hoebee, S. E. & Scheidegger, C. (2005) Microsatellites reveal regional population differentiation and isolation in Lobaria pulmonaria, an epiphytic lichen. Molecular Ecology 14: 457467.CrossRefGoogle ScholarPubMed
Werth, S. (2010) Population genetics of lichen-forming fungi: a review. Lichenologist 42: 499519.CrossRefGoogle Scholar
Werth, S. (2011) Optimal sample sizes and allelic diversity in studies of the genetic variability of mycobiont and photobiont populations. Lichenologist 43: 7381.CrossRefGoogle Scholar
Werth, S. & Sork, V. L. (2010) Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California. American Journal of Botany 97: 821830.CrossRefGoogle ScholarPubMed
White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315322. New York: Academic Press.Google Scholar
Widmer, I., Dal Grande, F., Cornejo, C. & Scheidegger, C. (2010) Highly variable microsatellite markers for the fungal and algal symbionts of the lichen Lobaria pulmonaria and challenges in developing biont-specific molecular markers for fungal associations. Fungal Biology 114: 538544.CrossRefGoogle ScholarPubMed
Wright, S. (1931) Evolution in Mendelian populations. Genetics 16: 97159.Google ScholarPubMed
Wright, S. (1943) Isolation-by-distance. Genetics 28: 114138.Google ScholarPubMed
Yahr, R., Vilgalys, R. & DePriest, P. T. (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Molecular Ecology 13: 33673378.CrossRefGoogle ScholarPubMed
Yahr, R., Vilgalys, R. & DePriest, P. T. (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist 171: 847860.CrossRefGoogle ScholarPubMed
Zhang, T. & Wei, J. C. (2011) Survival analysis of symbionts isolated from Endocarpon pusillum Hedwig to desiccation and starvation stress. Science China, Life Sciences 54: 480489.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Genetic diversity of the lichen-forming alga, Diplosphaera chodatii, in North America and Europe
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Genetic diversity of the lichen-forming alga, Diplosphaera chodatii, in North America and Europe
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Genetic diversity of the lichen-forming alga, Diplosphaera chodatii, in North America and Europe
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *