Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-02T16:13:52.507Z Has data issue: false hasContentIssue false

Non-destructive μXRF analysis of glass and metal objects from sites in the Libyan pre-desert and Fazzan

Published online by Cambridge University Press:  09 September 2015

C.N. Duckworth
Affiliation:
School of Archaeology and Ancient History, University of Leicester.
A. Cuénod
Affiliation:
School of Archaeology and Ancient History, University of Leicester.
D.J. Mattingly
Affiliation:
School of Archaeology and Ancient History, University of Leicester.

Abstract

This paper reports on the non-destructive analysis of 42 samples of copper alloy and glass from sites in Libya, using semi-quantitative μXRF, carried out as part of the work of the Trans-Sahara Project funded by the European Research Council. These are among the first chemical analyses to be performed on metals and glasses of any period found in Libya, and the results – though preliminary – raise some interesting possibilities. In particular, we discuss some possible indications with regard to the practice of recycling glasses, as evidenced through heterogeneous, malformed glass beads with variable quantities of lead. A glass mirror from Ghirza was also found to be backed in lead, and was probably the result of a glass-making technique still practised in recent times in India. The metal analysis has revealed evidence of a pre-Islamic trade in brass in the northern Sahara, as well as showing the presence of objects made from the mixing of different types of scrap metal, a process probably taking place at the Garamantian metalworking site of Saniat Jibril among other locations. The importance of further analysis of available Libyan and other North African metal artefacts and glasses for the contextualisation and extension of these findings is emphasised.

يعرض هذا البحث نتائج تحليل عينات غير مدمرة من سبائك نحاسية وزجاج أخذت من مواقع ليبية وحللت باستخدام تقنية الأشعة السينية المتفلورة، ضمن مشروع "عبر الصحراء" الذي موله مجلس البحث الأوروبي . وتعد هذه التحاليل من أوائل التحاليل الكيميائية التي أجريت على المعادن والزجاج في أي فترة في ليبيا. ومع أن النتائج أوليّة، إلا أنها تطرح تساؤلات مهمة لا سيما احتمال وجود مؤشرات على ممارسة عملية تدوير الزجاج التي تظهر بوضوح من خلال عدم تجانس حبيبات الزجاج واختلاطها بكميات متفاوتة من الرصاص . كما وُجدت مرآة زجاجية في منطقة غرزة ظهر في تركيبها كمية من الرصاص، وربما نتج ذلك عن تقنية خاصة لصناعة الزجاج لا زالت تستخدم حتى الآن في الهند.

لقد كشف تحليل المعادن عن أدلة تشير إلى ظهور تجارة النحاس شمال الصحراء قبل الإسلام، وهناك أدلة أخرى تظهر وجود مواد صُنعت من خليط من بقايا معادن مختلفة، ربما صُنعت في ورش الجرمنتيين، سكان ليبيا القدامى، في سانية جبريل وغيرها من المواقع . يؤكد البحث على أهمية إجراء المزيد من التحاليل على القطع الزجاجية والمعدنية المتوفرة في ليبيا وشمال إفريقيا لتطوير هذه النتائج ووضعها في سياقها المناسب .

Type
Articles
Copyright
Copyright © The Society for Libyan Studies 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beckmann, J. 1846. A History of Inventions and Discoveries. 4th edition. Henry, G. Bohn, London.Google Scholar
Bourhis, J.R., and Briard, J. 1979. Analyses spectrographiques d'objets préhistoriques et antiques. 4eme série. Université de Rennes, Rennes.Google Scholar
Brill, R.H. 1999. Chemical Analyses of Early Glasses. Volume 2. Tables of Analyses. Corning Museum of Glass, New York.Google Scholar
Brill, R.H. 2009. Chemical analyses. In Bass, G.F. (ed.), Serçe Limanı Volume 2: The Glass of an Eleventh-Century Shipwreck. Ed Rachal Foundation Nautical Archaeology Series. Texas A&M University Press.Google Scholar
Brogan, O., and Smith, D.J. 1984. Ghirza: a Libyan settlement in the Roman period. Libyan Antiquities Series 1. Department of Antiquities, Tripoli.Google Scholar
Carmona, N., Angeles Villegas, M., Jiménez, P., Navarro, J., and García-Heras, M. 2009. Islamic glasses from al-Andalus. Characterisation of materials from a Murcian workshop (12th century AD, Spain). Journal of Cultural Heritage 10: 439–45.Google Scholar
Craddock, P.T. 1978. The composition of the copper alloys used by the Greek, Etruscan and Roman civilizations: 3. The origins and early use of brass. Journal of Archaeological Science 5.1: 116.Google Scholar
Craddock, P.T. 1985. Medieval copper alloy production and West African bronze analyses: part I. Archaeometry 27.1: 1741.Google Scholar
Duckworth, C.N., Córdoba de la Llave, R., Faber, E.W., Govantes Edwards, D.J., and Henderson, J. 2014. Electron Microprobe Analysis of 9th–12th Century Islamic Glass from Cordoba, Spain. Archaeometry. doi:10.1111/arcm.12079.Google Scholar
Dungworth, D. 1997. Iron Age and Roman copper alloys from northern Britain. Internet Archaeology 2. Council for British Archaeology. doi:10.11141/ia.2.2.Google Scholar
Fenn, T.R., Killick, D.J., Chesley, J., Magnavita, S., and Ruiz, J. 2009. Contacts between West Africa and Roman North Africa: archaeometallurgical results from Kissi, Northeastern Burkina Faso. In Magnavita, S., Koté, L., Breunig, P., and Idé, O.A. (eds), Cultural and Technological Developments in First Millennium BC/AD West Africa. Frankfurt am Main: 119–46.Google Scholar
Forbes, R.J. 1966. Studies in Ancient Technology Volume 6. E.J. Brill, Leiden.Google Scholar
Henderson, J., McLoughlin, S.D., and McPhail, D.S. 2004. Radical changes in Islamic glass technology: evidence for conservatism and experimentation with new glass recipes from Early and Middle Islamic Raqqa, Syria. Archaeometry 46.3: 439–68.Google Scholar
Kock, J., and Sode, T. 2002. Medieval glass mirrors in southern Scandinavia and their technique as still practiced in India. Journal of Glass Studies 44: 7994.Google Scholar
Krueger, I. 2006. Post-Medieval colored lead glass vessels. Journal of Glass Studies 48: 225–41.Google Scholar
McIntosh, S.K. (ed.) 1995. Excavations at Jenné-Jeno, Hambarketolo, and Kaniana (Inland Niger Delta, Mali), the 1981 Season, vol. 20. University of California Press, Berkeley.Google Scholar
Mattingly, D.J. (ed.) 2003. = Mattingly, D.J., Daniels, C.M., Dore, J.N., Edwards, D., and Hawthorne, J. 2003. The Archaeology of Fazzān. Volume 1, Synthesis. Department of Antiquities, Tripoli; Society for Libyan Studies, London.Google Scholar
Mattingly, D.J. (ed.) 2007. = Mattingly, D.J., Daniels, C.M., Dore, J.N., Edwards, D., and Hawthorne, J. 2007. The Archaeology of Fazzān. Volume 2, Site Gazetteer, Pottery and other Survey Finds. Department of Antiquities, Tripoli; Society for Libyan Studies, London.Google Scholar
Mattingly, D.J. (ed.) 2010. = Mattingly, D.J., Daniels, C.M., Dore, J.N., Edwards, D., and Hawthorne, J. 2010. The Archaeology of Fazzān. Volume 3, Excavations carried out by C. M. Daniels. Department of Antiquities, Tripoli; Society for Libyan Studies, London.Google Scholar
Mattingly, D.J. (ed.) 2013. = Mattingly, D.J., Daniels, C.M., Dore, J.N., Edwards, D., Leone, A., and Thomas, D. 2013. The Archaeology of Fazzan. Volume 4, Survey and Excavations at Old Jarma (Ancient Garama) carried out by C.M. Daniels (1962–69) and the Fazzan Project (1997–2001). Department of Antiquities, Tripoli; Society for Libyan Studies, London.Google Scholar
Mecking, O. 2013. Medieval lead glass in central Europe. Archaeometry 55: 640–62.CrossRefGoogle Scholar
Mommsen, H., Bruning, A., Dittman, H., Hein, A., Rosenberg, A., and Sarrazin, G. 1997. Recent investigations of early Roman cameo glass 2. X-Ray Fluorescence analyses induced by synchrotron radiation. Glastechnische Berichte – Glass Science and Technology 70.7: 211–19.Google Scholar
Monod, T. 1969. Le «Macden Ijâfen»: une épave caravanière ancienne dans le Majâbat al-Koubrâ. Actes du premier Colloque International d'archéologie Africaine: Fort-Lamy (République du Tchad), 11–16 Décembre 1966. Institut National Tchadien pour les Sciences Humaines (INTSH), Fort-Lamy: 286320.Google Scholar
Orfanou, V., and Rehren, Th. 2014. A (not so) dangerous method: pXRF vs. EPMA-WDS analyses of copper-based artefacts. Archaeological and Anthropological Sciences: 111.Google Scholar
Pollard, A.M., Bray, P., Gosden, C., Wilson, A., and Hamerow, H. 2015. Characterising copper-based metals in Britain in the first millennium AD: a preliminary quantification of metal flow and recycling. Antiquity 89.345: 697713.Google Scholar
Ponting, M.J. 2002. Roman military copper-alloy artefacts from Israel: questions of organization and ethnicity. Archaeometry 44.4: 555–71.Google Scholar
Ponting, M., and Segal, I. 1998. Inductively coupled plasma atomic emission spectroscopy analyses of Roman military copper-alloy artefacts from the excavations at Masada Israel. Archaeometry 40.1: 109–22.CrossRefGoogle Scholar
Schrüfer-Kolb, I. 2007. Metallurgical and non-metallurgical industrial activities. In Mattingly 2007: 448–62.Google Scholar
Tagart, C., and Mattingly, D.J. 2010. Metal artefacts. In Mattingly 2010: 475–81.Google Scholar
Thornton, C.P. 2007. Of brass and bronze in prehistoric southwest Asia. In La Niece, S., Hook, D., and Craddock, P. (eds), Metals and Mines: studies in archaeometallurgy. Archetype Publications in association with the British Museum, London: 189201.Google Scholar