Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T12:12:23.373Z Has data issue: false hasContentIssue false

ASSESSING THE EARLY HOLOCENE ENVIRONMENT OF NORTHWESTERN GUYANA: AN ISOTOPIC ANALYSIS OF HUMAN AND FAUNAL REMAINS

Published online by Cambridge University Press:  05 April 2018

Louisa Daggers
Affiliation:
Amerindian Research Unit, University of Guyana, Georgetown, Guyana
Mark G. Plew*
Affiliation:
Department of Anthropology, Boise State University, 1910 University Drive, Boise, ID 83725, USA
Alex Edwards
Affiliation:
Department of Geology, University of Georgia, Athens, GA 30602, USA
Samantha Evans
Affiliation:
Department of Geosciences, Boise State University, 1910 University Drive, Boise, ID 83725, USA
Robin B. Trayler
Affiliation:
Department of Geosciences, Boise State University, 1910 University Drive, Boise, ID 83725, USA
*
(mplew@boisestate.edu, corresponding author)

Abstract

This study uses stable carbon δ13C and oxygen δ18O isotope compositions data to assess the extent to which diet breadths of northwestern Guyana changed during the Holocene. We analyzed human bone and enamel remains from seven shell mound sites dating between 7500 and 2600 BP. Our analyses demonstrate some constancy in C3 plant availability during the past several thousand years, though we note increasing reliance on such plants beginning in the Early Holocene. We also document warming intervals during the Early Holocene (Early Archaic) that appear to correlate with dry periods known elsewhere in the central Amazon during this period.

Esta investigación utiliza datos de isótopos estables de carbono δ13C y oxígeno δ18O para evaluar en qué medida cambió la amplitud de la dieta del noroeste de Guyana durante el Holoceno. Analizamos restos óseos humanos y esmalte de siete concheros fechados entre 7500 y 2600 años aP. Nuestros análisis muestran cierto grado de constancia en la disponibilidad de plantas C3 durante los últimos miles de años, aunque se observa una creciente dependencia en tales plantas a comienzos del Holoceno temprano. También documentamos intervalos más cálidos durante el Holoceno temprano (Arcaico Temprano) que parecen correlacionarse con los periodos secos conocidos en otras partes del Amazonas central durante este lapso.

Type
Article
Copyright
Copyright © 2018 by the Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Boomert, Arie 2000 Trinidad, Tobago and Lower Orinoco Interaction Sphere: An Archaeological and Ethnohistorical Study. Cairi Publications, Alkmaar.Google Scholar
Bryant, Daniel J., Koch, Paul L., Froelich, Philip N., Showers, William J., and Genna, Bernard J. 1996 Oxygen Isotope Partitioning between Phosphate and Carbonate in Mammalian Apatite. Geochemica y Cosmochemica Acta 60:51455148.CrossRefGoogle Scholar
Cerling, Thure E., Hart, John A., and Hart, Teresa B. 2004 Stable Isotope Ecology of the Ituri Forest. Oecologia 138:512.CrossRefGoogle ScholarPubMed
Clementz, Mark T., and Koch, Paul. L. 2001 Differentiating Aquatic Mammal Habitat and Foraging Ecology with Stable Isotopes in Tooth Enamel. Oecologia 129:461472.CrossRefGoogle ScholarPubMed
Daggers, Louisa B. 2017 Notes on Test Excavations of Little Kaniballi Shell Mound. On file, Walter Roth Museum of Anthropology.Google Scholar
Daggers, Louisa B., and Plew, Mark. G. 2017 Assessing Prehistoric Diet Breadth and Environment to Model a Low Carbon Life Way. Final report submitted to the University of Guyana Science and Technology Support Project.Google Scholar
Dahl-Jensen, Dorthe, Mosegaard, Klaus, Gundestrup, Niels, Clow, Gary D., Johnsen, Sigfus J., Hansen, Aksel W., and Balling, Niels 1998 Past Temperature Directly from Greenland Ice Sheet. Science 282:268271.CrossRefGoogle ScholarPubMed
Dansgaard, Willi.1964 Stable Isotopes in Precipitation. Tellus 16:436468.CrossRefGoogle Scholar
Ehleringer, James R., Phillips, Susan L., and Comstock, Jonathan P. 1992 Seasonal Variation in the Carbon Isotopic Composition of Desert Plants. Functional Ecology 6:396404.CrossRefGoogle Scholar
EhleringerJames, R. James, R., and Monson, Russell K. 1993 Evolutionary and Ecological Aspects of Photosynthetic Pathway Variation. Annual Review of Ecology and Systematics 24:411439.CrossRefGoogle Scholar
ElliottJames, C. James, C. 2002 Calcium Phosphate Biominerals. Reviews in Mineralogy and Geochemistry 48 (1):427453.CrossRefGoogle Scholar
EvansClifford, A. Clifford, A., and Meggers, Betty J. 1960 Archeological Investigations in British Guiana. Bureau of American Ethnology. Bulletin 197. Smithsonian Institution, Washington, DC.Google Scholar
Fairbridge, Rhodes W. 1976 Shellfish-Eating Preceramic Indians in Coastal Brazil. Science 191:353359CrossRefGoogle ScholarPubMed
Fricke, Henry C., O'Neil, James R., Niels, Lynnerup 1995 Oxygen Isotope Composition of Human Tooth Enamel from Medieval Greenland: Linking Climate and Society, Geology. Geology 23 (10):869872.2.3.CO;2>CrossRefGoogle Scholar
Gagan, Michael K., Ayliffe, Linda K., Hopley, David, Cali, Joseph A., Mortimer, Graham E., Chappell, John, and McCulloch, Malcom T. 1998 Temperature and Surface-Ocean Water Balance of the Mid-Holocene Tropical Western Pacific. Science 279 (5353):10141018.CrossRefGoogle ScholarPubMed
Gonfiantini, Roberto, Gratziu, S., and Tongiori, Enzo 1965 Oxygen Isotope Composition of Water in Leaves. Isotopes and Radiation in Soil-Plant Nutrition Studies. Proceedings of the International Atomic Energy Agency 206:405410. Vienna, Austria.Google Scholar
Guehl, James M., Domenach, Anne-Marie, Bereau, Moïse, Barigah, Têté Séverien, Casabianca, Hervé, Ferhi, André, and Garbaye, Jean 1998 Functional Diversity in Amazonian Rainforest of French Guyana: A Dual Isotope Approach (δ 15N and δ 13C). Oecologia 116:316330.CrossRefGoogle ScholarPubMed
Hammond, David S., ter Steege, Hans, and van der Borg, Klaas 2006 Upland Soil Charcoal in the Wet Tropical Forests of Central Guyana. Biotropica 39:153160.CrossRefGoogle Scholar
Helliker, Brent R., and Ehleringer, James R. 2000 Establishing a Grassland Signature in Veins: 18O in the Leaf Water of C3 and C4 Grasses. PNAS 97:78947898.CrossRefGoogle ScholarPubMed
Indermühle, Andreas, Stocker, Thomas F., Joos, Fortunat, Fischer, Hubertus, Smith, H. Jesse, Wahlen, Martin, Deck, Bruce, Mastroianni, Derek, Tschumi, Jürg, Blunier, Thomas, Meyer, Robert, and Stauffer, Bernhard 1999 Holocene Carbon-Cycle Dynamics based on CO2 Trapped in Ice at Taylor Dome, Antarctica. Nature 398:121126.CrossRefGoogle Scholar
Iriarte, José., Power, Mitchell J., Rostain, Stéphen, Mayle, Francis E., Jones, Huw, Watling, Jennifer, Whitney, Bronwen S., and McKey, Doyle 2012 Fire-Free Land Use in Pre-1492 Amazonian Savannas. PNAS. 109 (17):64736478.CrossRefGoogle ScholarPubMed
Jansma, Matthew J. 1981 Diatom Analysis of a Section in the Barabina Shell Midden. Archaeology and Anthropology 4 (1–2):3738.Google Scholar
Janssen, Renée, Joordens, Josephine C.A., Koutamanis, Dafne S., Puspaningrum, Mika R., de Vos, John, van der Lubbe, Jeroen H.J.L., Reijmer, John J.G., Hampe, Oliver, and Vonhof, Hubert B. 2016 Tooth Enamel Stable Isotopes of Holocene and Pleistocene Fossil Fauna Reveal Glacial and Interglacial Paleoenvironments of Hominins in Indonesia. Quaternary Science Reviews 144:145154.CrossRefGoogle Scholar
Koch, Paul, Tuross, Noreen, Fogel, Marilyn 1997 The Effects of Sample Treatment and Diagenesis on the Isotopic Integrity of Carbonate in Biogenic Hydroxyapatite. Journal of Archeological Science 24:417429.CrossRefGoogle Scholar
Kohn, Matthew J. 2010 Carbon Isotope Compositions of Terrestrial C3 Plants as Indicators of Paleoecology and Paleoclimate. PNAS 107:1969119695.CrossRefGoogle ScholarPubMed
Kohn, Matthew J., and Cerling, Thure E. 2002 Stable Isotope Compositions of Biological Apatite. In Phosphates, Geochemical, Geobiological and Materials Importance, edited by Kohn, Matthew J., Rakovan, John, and Hughes, John M., pp. 455488. Mineralogical Society of America, Washington, DC.CrossRefGoogle Scholar
Kohn, Matthew J., Schoeninger, Margaret J., and Valley, John W. 1996 Herbivore Tooth Oxygen Isotope Compositions: Effects of Diet and Physiology. Geochemica y Cosmochemica Acta 60:38893896.CrossRefGoogle Scholar
Koshkarova, Vladimir L., Koshkarov, A.D. 2004 Regional Signatures of Changing Landscape and Climate of Northern Central Siberia in the Holocene. Russian Geology and Geophysics. 45 (6):672685.Google Scholar
Ledru, Marie-Pierre 1993 Late Quaternary EnvironmentalClimatic Changes in Central Brazil. Quaternary Research 39:9098CrossRefGoogle Scholar
Lee-Thorp, Julia, Sponheimer, Matt 2006 Contributions of Biochemistry to Understanding Hominin Dietary Ecology. American Journal of Physical Anthropology 131 (suppl. 43):131148.CrossRefGoogle Scholar
Lombardo, Umberto, Sazbo, Katherine, Caprilles, José M., May, Jan-Hendrik, Amelung, Wulf, Hutterer, Rainer, Lehndorff, Eva, Plotzki, Anna, and Veit, Heinz 2013 Early and Middle Holocene Hunter-Gather Occupations in Western Amazonia: The Hidden Shell Middens. PLOS ONE 8:114.CrossRefGoogle Scholar
Lüdecke, Tina, Mulch, Andreas, Kullmer, Ottmar, Sandrock, Oliver, Theimeyer, Heinrich, Fiebig, Jens, Schrenk, Friedemann 2016 Stable Isotope Dietary Reconstructions of Herbivore Enamel Reveal Heterogeneous Savanna Ecosystems in the Plio-Pleistocene Malawi Rift. Palaeogeography, Palaeoclimatology, Palaeoecology 459:170181.CrossRefGoogle Scholar
Mayle, Francis E., and Power, Mitchell J. 2008 Impact of a Drier Early–Mid-Holocene Climate upon Amazonian Forests. Philosophical Transactions of the Royal Society of London 363:18291838.CrossRefGoogle ScholarPubMed
Mayle, Francis E., Beerling, David J., Gosling, William D., and Bush, Mark B. 2004 Responses of Amazonian Ecosystems to Climatic and Atmospheric Carbon Dioxide Changes Since the Last Glacial Maximum. Philosophical Transactions of the Royal Society of London 559:499514.CrossRefGoogle Scholar
Olsen, Karyn C., White, Christine D., Longstaffe, Fred J., von Heyking, Kristin, McGlynn, George, Grupe, Gisela, and Rühli, Frank J. 2014 Intraskeletal Isotopic Compositions (13C,15N) of Bone Collagen: Nonpathological and Pathological Variation. American Journal of Physical Anthropology, 153 (4):598604.CrossRefGoogle Scholar
Pessenda, Luiz C.R., Aravena, Ramón, Melfi, Adolpho J., Telles, Everaldo C.C., Boulet, René, Valencia, E.P.E., and Tomazzello, Mario 1996 The Use of Carbon Isotopes (13C, 14C) in Soil to Evaluate Vegetation Changes During the Holocene in Central Brazil. Radiocarbon 38:191201.CrossRefGoogle Scholar
Plew, Mark G. 2010 Pleistocene-Early Holocene Environmental Change: Implications for Human Adaptive Responses in the Guianas. In Anthropologies of Guayana: Cultural Spaces in Northeastern Amazonia, edited by Whitehead, Neil L. and Aleman, Stephanie W., pp. 2335, University of Arizona Press, Tucson.Google Scholar
Plew, Mark G. 2016 The Archaeology of Piraka Shell Mound. Archaeology and Anthropology 20:6982Google Scholar
Plew, Mark G., and Daggers, Louisa B. 2016 Archaeological Test Excavations at Siriki Shell Mound, Northwest Guyana. Monographs in Archaeology No. 5. University of Guyana, Georgetown.Google Scholar
Plew, Mark G., and Willson, Christopher 2009 Archaeological Test Excavations at Wyva Creek, Northwestern Guyana. Monographs in Archaeology No. 3. University of Guyana, Georgetown.Google Scholar
Plew, Mark G., Pereira, Gerard, and Simon, George 2007 Archaeological Survey and Test Excavations of the Kabakaburi Shell Mound, Northwestern Guyana. Monographs in Archaeology No. 1. University of Guyana, Georgetown.Google Scholar
Plew, Mark G., Willson, Christopher, and Daggers, Louisa 2012 Archaeological Excavations of Siriki Shell Mound Northwest Guyana. Monographs in Archaeology No. 4. University of Guyana, Georgetown.Google Scholar
RooseveltAnna, C. Anna, C. 1997 The Demise of the Alaka Initial Ceramic Phase Has Been Greatly Exaggerated: Response to D. Williams. American Antiquity 62:353364.CrossRefGoogle Scholar
Rull, Valentí 1999 Palaeoclimatology and Sea-Level History in Venezuela. New Data, Land-Sea Correlations, and Proposal for Future Studies in the Frame of the IGBP-PAGES Project. Interciencia 24, 92101.Google Scholar
SandbergPaul, A. Paul, A., Loudon, James E., and Sponheimer, Matt 2012 Stable Isotope Analysis in Primatology: A Critical Review. American Journal of Primatology 74:969989.CrossRefGoogle ScholarPubMed
Sternberg, Leonel D.S.L. 1989 Oxygen and Hydrogen Isotope Ratios in Plant Cellulose: Mechanisms and Applications. In Stable Isotopes in Ecological Research, edited by Rundel, Philip, Ehleringer, James R., and Nagy, Kenneth A., pp. 124141. Springer, New York.CrossRefGoogle Scholar
Tardy, Christophe 1998 Paléoincendies naturels, feux anthropiques et environnements forestiers de Guyane Française du tardig-laciaire á l'holocène récent: approaches chronologique et anthracologique. PhD dissertation. Université Montpellier II, Montpellier.Google Scholar
Van der Hammen, Thomas 1982 Paleoecology of Tropical South America. In Biological Diversification in the Tropics: Proceedings of the Fifth International Symposium of the Association for Tropical Biology, edited by Prance, Ghillean T., pp. 6066. Columbia University Press, New York.Google Scholar
Van der Hammen, Thomas 1963 A Palynological Study of the Quaternary of British Guiana. Leidse Geologishe Mededelinger 29:135180.Google Scholar
Van der Hammen, Thomas, Wijmstra, Tiete A. 1964 A Palynological Study on the Tartary and Upper Cretaceous of British Guiana. Leidse Geologische Mededelingen 30 (1):183241.Google Scholar
Van der Merwe, Nikolaas J., and Medina, Ernesto 1991 The Canopy Effect, Carbon Isotope Ratios and Food Webs in Amazonia. Journal of Archeological Science 18:249259.CrossRefGoogle Scholar
Warinner, Christina, Tuross, Noreen 2009 Alkaline Cooking and Stable Isotope Tissue-Diet Spacing in Swine: Archeological Implications. Journal of Archaeological Science 36:16901697.CrossRefGoogle Scholar
Webb, Emily C., White, Christine D., and Longstaffe, Fred J. 2014 Investigating Inherent Differences in Isotopic Composition between Human Bone and Enamel Bioapatite: Implications for Reconstructing Residential Histories. Journal of Archeological Science 50:97107.CrossRefGoogle Scholar
Williams, Denis 1981 Excavation of the Barabina Shell Mound, Northwest District: An Interim Report. Archaeology and Anthropology 2 (2):125140.Google Scholar
Williams, Denis 1996 The Mabaruma Phase: Origin Characterization and Chronology. Archaeology and Anthropology 11:353.Google Scholar
Williams, Denis 2003 Prehistoric Guiana. Ian Randle, Kingston.Google Scholar
Supplementary material: File

Daggers et al. supplementary material

Daggers et al. supplementary material 1

Download Daggers et al. supplementary material(File)
File 22 KB