Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-24T18:08:26.668Z Has data issue: false hasContentIssue false

Sub-femtosecond hard X-ray radiation generated by electron bunches ejected from water jet

Published online by Cambridge University Press:  04 September 2013

N. Zhavoronkov*
Affiliation:
Max-Born-Institute, Berlin, German
A. Andreev
Affiliation:
Max-Born-Institute, Berlin, German Vavilov State Instutute, St. Petersburg, Russia
K. Platonov
Affiliation:
Vavilov State Instutute, St. Petersburg, Russia
*
Address correspondence and reprint requests to: N. Zhavoronkov, Max-Born-Institute, Max-Born-Str. 2A, 12489 Berlin, German. E-mail: zhavoron@mbi-berlin-de

Abstract

A new two-step approach for frequency conversion of laser radiation towards hard X-rays is developed and examined experimentally. Fast electrons are produced in a form of thin jets at the first stage, as an intense femtosecond laser pulses impinges on a micrometer water target. In the second stage the accelerated electrons hit a secondary metal target and generate characteristic K-shell radiation with a duration down to sub-femtosecond. It is shown that counter propagating laser radiation experiences very strong up-shift with up to 6 × 103 times of fundamental frequency by reflection from the electron jets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A., Kryzhanovskiy, N. & Solovyev, N. (1983). Absorption and scattering of laser beam in spherical plasma target. Opt. Spectrosc. 54, 547566.Google Scholar
Andreev, A. & Platonov, K. Yu. (2011). Hybrid model of ion acceleration in laser plasma of flat heterogeneous target. Opt. Spectrosc. 101, 2329.Google Scholar
Bargheer, M.Zhavoronkov, M., Gritsai, Y, Woo, J.C., Kim, D.S., Woerner, M. & Elsaesser, T. (2004). Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction. Sci. 361, 17711773.CrossRefGoogle Scholar
Berglund, M., Rymell, L., Hertz, H.M. & Wilheim, T. (1998). Cryogenic liquid-jet target for debris-free laser-plasma soft X-ray generation. Rev. Sci. Instrum. 69, 23612364.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T. & Tajima, T. (2003). Light intensification towards the Schwinger limit. Phys. Rev. Lett. 91, 085001–4.CrossRefGoogle ScholarPubMed
Dusterer, S., Radcliffe, P., Bostedt, C., Bozek, J., Cavalieri, A.L., Coffee, R., Costello, J.T., Cubaynes, D., DiMauro, L.F., Ding, Y., Doumy, G., Grüner, F., Helml, W., Schweinberger, W., Kienberger, R., Maier, A.R., Messerschmidt, M., Richardson, V., Roedig, C., Tschentscher, T. & Meyer, M. (2011). Femtosecond x-ray pulse length characterization at the Linac Coherent Light Source free-electron laser. New J. of Physics 13, 093024–10.CrossRefGoogle Scholar
Emma, P.Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., Brachmann, A., Bucksbaum, P., Coffee, R., Decker, F.-J., Ding, Y., Dowell, D., Edstrom, S., Fisher, A., Frisch, J., Gilevich, S., Hastings, J., Hays, G., Hering, Ph., Huang, Z., Iverson, R., Loos, H., Messerschmidt, M., Miahnahri, A., Moeller, S., Nuhn, H.-D., Pile, G., Ratner, D., Rzepiela, J., Schultz, D., Smith, T., Stefan, P., Tompkins, H., Turner, J., Welch, J., White, W., Wu, J., Yocky, G. & Galayda, J. (2010). First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641647.CrossRefGoogle Scholar
Esirkepov, T., Bulanov, S.V., Kando, M., Pirozhkov, A.S. & Zhidkov, A.G. (2009). Boosted high-harmonics pulse from a double-sided relativistic mirror. Phys. Rev. Lett. 103, 025002–4.CrossRefGoogle ScholarPubMed
Faubel, M. & Kiters, Th. (1989). Non-equilibrium molecular evaporation of carboxylic acid dimers. Nat. 339, 527529.CrossRefGoogle Scholar
Gibbon, P. (2005). Short Pulse Laser Interaction with Matter. London: Imperial College Press.CrossRefGoogle Scholar
Gonoskov, A., Korzhimanov, A.V., Kim, A.V., Marklund, M. & Sergeev, A.M. (2011). Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses. Phys. Rev. E 84, 046403–7.CrossRefGoogle ScholarPubMed
Giulietti, A., Bourgeois, N., Ceccotti, T., Davoine, X., Dobosz, S., DâOliveira, P., Galimberti, M., Galy, J., Gamucci, A., Giulietti, D., Gizzi, L.A., Hamilton, D.J., Lefebvre, E., Labate, L., Marquès, J.R., Monot, P., Popescu, H., Réau, F., Sarri, G., Tomassini, P. & Martin, P. (2008). Intense γ-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses. Phys. Rev. Lett. 101, 105002–4.CrossRefGoogle ScholarPubMed
Glinec, Y., Faure, J., Pukhoc, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.CrossRefGoogle Scholar
Kando, M., Fukuda, Y., Pirozhkov, A.S., Ma, J., Daito, I., Chen, L.-M., Esirkepov, T. Zh., Ogura, K., Homma, T., Hayashi, Y., Kotaki, H., Sagisaka, A., Mori, M., Koga, J.K., Daido, H., Bulanov, S.V., Kimura, T., Kato, Y. & Tajima, T. (2007). Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield. Phys. Rev. Lett. 99, 135001–4.CrossRefGoogle Scholar
Kemp, A.J. & Ruhl, H. (2005). Multispecies ion acceleration off laser-irradiated water droplets. Phys. of Plasmas 12, 033105–10.CrossRefGoogle Scholar
Lavocat-Dubuis, X.Vidal, F., Matte, J-P., Kieffer, J-C. & Ozaki, T. (2011). Multiple attosecond pulse generation in relativistically laser-driven overdense plasmas. N J. Phys. 13, 023039–12.CrossRefGoogle Scholar
Liseikina, S., Pirner, S. & Bauer, D. (2010). Relativistic attosecond electron bunches from laser-illuminated droplets. Phys. Rev. Lett. 104, 095002–4.Google Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Nakano, H., Andreev, A. & Limpouch, J. (2004). Femtosecond X-ray line emission from multilayer targets irradiated by short laser pulses. Appl. Phys. B 79, 469476.CrossRefGoogle Scholar
Naumova, N., Sokolov, I., Nee, J.s, Maksimchuk, A., Yanovsky, V. & Mourou, G. (2004). Attosecond electron bunches. Phys. Rev. Lett. 93, 195003–4.CrossRefGoogle ScholarPubMed
Landau, L.D. & Lifshitz, E.M. (1960). Electrodynamics of continuous Media. New York: Pergamon Press.Google Scholar
Mackinnon, A., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S., Key, M.H., Andersen, C., Snavely, R. & Freeman, R.R. (2002). Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys.Rev. Lett. 88, 215006–4.CrossRefGoogle ScholarPubMed
Tompkins, R.J., Mercer, I.P., Fettweis, M., Barnett, C.J., Klug, D.R., Porter, Lord G., Clark, I., Jackson, S., Matousek, P., Parker, A.W. & Towrie, M. (1998). 5–20 keV laser-induced x-ray generation at 1 kHz from a liquid-jet target. Rev. Sci. Instrum. 69, 31133117.CrossRefGoogle Scholar
Von der Linde, D., Sokolowski-Tinten, K., Blome, Ch., Dietrich, C., Zhou, P., Tarasevitch, A., Cavalleri, A., Siders, C.W., Barty, C.P.J., Squier, J., Wilson, K.R., Uschmann, I. & Forster, E. (2001). Generation and application of ultrashort X-ray pulses. Laser Part. Beams 19, 1522.CrossRefGoogle Scholar
Uhlig, J., Wahlstrom, C.-G., Walczak, M., Sundstrom, W. & Fullagar, W. (2011). Laser generated 300 keV electron beams from water. Laser Part. Beams 29, 415424.CrossRefGoogle Scholar
Zhavoronkov, N., Gritsai, Y, Bargheer, M., Woerner, M, Elsaesser, T., Zamponi, F., Uschmann, I. & Förster, E. (2005). Microfocus Cu K-alpha source for femtosecond x-ray science. Opt. Lett. 30, 17371739.CrossRefGoogle ScholarPubMed
Zhavoronkov, N., Gritsai, Y., Korn, G. & Elsaesser, T. (2004). Ultra-short efficient laser-driven hard X-ray source operated at a kHz repetition rate. Appl. Phys. B 79, 663667.CrossRefGoogle Scholar