Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T00:39:03.707Z Has data issue: false hasContentIssue false

Studies on laser-driven shocks using a Nd:glass laser

Published online by Cambridge University Press:  09 March 2009

L.J. Dhareshwar
Affiliation:
Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India
N. Gopi
Affiliation:
Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India
C.G. Murali
Affiliation:
Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India
B.S. Narayan
Affiliation:
Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India
U.K. Chatterjee
Affiliation:
Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India

Abstract

A review of work done on laser generated shocks in solids using a high-peak-power Nd:glass laser in the Laser and Plasma Technology Division of the Bhabha Atomic Research Centre is presented in this paper. The 20-J/5-ns Nd:glass laser used in the experiments is able to produce focused laser intensities in the range of 5 × 1011-1013 W/cm2 and a shock pressure in the range of 0.1–5 Mbar. A l-J/100-ps Nd:glass laser is also being developed for laser shock studies, details of which are presented. Several diagnostics have been developed for laser shock studies of which the main diagnostics are optical shadowgraphy, optical interferometry, and laser velocity interferometry for particle velocity measurement. The measurement of ablation pressure in various types of targets, the scaling of ablation pressure with laser intensity, the effect of laser beam nonuniformity on shockfront or ablation pressure uniformity, the smoothing of shockfront and pressure profiles in high-Z coated and high-Z doped targets, and so on, are the various experimental studies conducted. We have tried to study X-ray driven ablation in aluminum and plastic targets using gold and copper as X-ray producing targets. Uniform pressure of about 0.1 Mbar has been generated over an area of 4 mm2

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babouneau, D. et al. 1984 Laser Interaction and Related Plasma Phenomena, Vol. 6, Hora, H. and Miley, G., eds. (Plenum, New York), p. 817.CrossRefGoogle Scholar
Barker, L.M. 1968 Behaviour of Dense Media Under High Dynamic Pressure (Gordon and Breach, New York), p. 483.Google Scholar
Barker, L.M. & Hoixenbach, R.E. 1970. J. Appl. Phys. 41, 4208.CrossRefGoogle Scholar
Barker, L.M. et al. 1972 Experimental Mechanics May, 209.CrossRefGoogle Scholar
Barker, L.M. & Hollenbach, R.E. 1972 J. Appl. Phys. 43, 4669.CrossRefGoogle Scholar
Bocher, J.L. et al. 1984 Phys. Rev. Lett. 52, 823.CrossRefGoogle Scholar
Caruso, A. et al. 1981 Plasma Phys. 10, 867.CrossRefGoogle Scholar
Cottet, F. et al. 1982 Phys. Rev. A 25, 576.CrossRefGoogle Scholar
Cottet, F. et al. 1984 Phys. Rev. Lett. 52, 1884.CrossRefGoogle Scholar
Cottet, F. et al. 1985 Appl. Phys. Lett. 47, 678.CrossRefGoogle Scholar
Decoste, R. et al. 1981 Phys. Rev. Lett. 47, 35.CrossRefGoogle Scholar
Dhareshwar, L.J. et al. 1982 ‘Interferometric technique of measuring electron density profiles in laser produced plasmas from solid targets,’ Bhabha Atomic Research Centre Report 1/726.Google Scholar
Dhareshwar, L.J. et al. 1985 Pramana. Jour. Phys. 25, 63.CrossRefGoogle Scholar
Dhareshwar, L.J. et al. 1986 Pramana. Jour. Phys. 27, 435.CrossRefGoogle Scholar
Dhareshwar, L.J. 1987 J. Appl. Phys. 61, 4458.CrossRefGoogle Scholar
Dhareshwar, L.J. et al. 1991 Rev. Sci. Instrum. 62, 369.CrossRefGoogle Scholar
Dhareshwar, L.J. et al. 1992a Plasma Phys. and Controlled Nuclear Fusion Research 3, 165.Google Scholar
Dhareshwar, L.J. et al. 1992b Laser and Particle Beams 10, 201.CrossRefGoogle Scholar
Dhareshwar, L.J. et al. 1992c Phys. Fluids B 4, 1635.CrossRefGoogle Scholar
Eidmann, K. et al. 1976 J. Appl. Phys. 47, 2402.CrossRefGoogle Scholar
Endo, T. et al. 1994 Phys. Rev. E 49, 1815.CrossRefGoogle Scholar
Fabro, R. et al. 1990 Laser and Particle Beams 8, 73.CrossRefGoogle Scholar
Grun, J. et al. 1981 Naval Research Laboratory Report 4491.Google Scholar
Grun, J. et al. 1982 Appl. Phys. Lett. 39, 545.CrossRefGoogle Scholar
Key, M.H. 1979 ‘Laser Plasma Interactions.’ In Proc. of 20th Scottish Universities Summer School in Physics, Cairns, R.A. and Sanderson, J.J., eds. (SUSSP Publications, Edinburgh, Scotland)p. 269.Google Scholar
Kidder, R.E. & Nuckolls, J. 1968 Nucl. Fusion 8, 3.CrossRefGoogle Scholar
Kinslow, R. 1970 High Velocity Impact Phenomena, R. Kinslow, ed. p. 543.Google Scholar
Lower, T. et al. 1994 Phys. Rev. Lett. 72, 3186.CrossRefGoogle Scholar
Malacara, D. 1978 Optical Shop Testing, Malacara, D., ed. (John Wiley, New York), chapter II, p. 65.Google Scholar
Manheimer, W.H. et al. 1982 Phys. Fluids 25, 1644.CrossRefGoogle Scholar
Millan, C. et al. 1988 Rev. Sci. Instrum. 59, 1.CrossRefGoogle Scholar
Mora, P. 1982 Phys. Fluids 25, 1051.CrossRefGoogle Scholar
More, R. 1981 Laser Interaction and Related Plasma Phenomena, Vol. 5, Schwarz, H. and Hora, H., eds. (Plenum Press, New York & London) p. 253.Google Scholar
Ng, A. et al. 1991 Phys. Rev. B 44, 4872.CrossRefGoogle Scholar
Nishimura, H. et al. 1983 Phys. Fluids 26, 1688.CrossRefGoogle Scholar
Nishimura, H. et al. 1993a In Proc. of the 14th Int. Conf. on Plasma Physics & Controlled Nuclear Fusion Research, Vol. 3, (Int. Atomic Energy Agency, Vienna) p. 97.Google Scholar
Nishimura, H. et al. 1993b, Laser and Particle Beams 11, 89.CrossRefGoogle Scholar
Obenschain, S.P. et al. 1981 Phys. Rev. Lett. 46, 1402.CrossRefGoogle Scholar
Pakula, R. & Sigel, R., 1985 Phys. Fluids 28, 232.CrossRefGoogle Scholar
Pant, H.C. et al. 1983 In ‘Radiation in Plasmas’ Vol. 11 of the Proc. of College on Plasma Physics, World Scientific, Singapore (ICTP, Trieste), p. 1184.Google Scholar
Pant, H.C. et al. 1984 J. Appl. Phys. 55, 697.CrossRefGoogle Scholar
Ripin, B.H. et al. 1980 Phys. Fluids 23, 1012CrossRefGoogle Scholar
Salzmann, D. et al. 1983 Phys. Rev. A 28.CrossRefGoogle Scholar
Setchell, R.E. 1979 J. Appl. Phys. 50, 8186.CrossRefGoogle Scholar
Sharma, S. et al. 1983 J. Appl. Phys. 54, 4666.CrossRefGoogle Scholar
Sigel, R. et al. 1990 Phys. Rev. Lett. 65, 587.CrossRefGoogle Scholar
Trainor, R.J. et al. 1979 Phys. Rev. Lett. 42, 1154.CrossRefGoogle Scholar
Tsakiris, G.D. et al. 1990 Phys. Rev. A 42, 6188.CrossRefGoogle Scholar
Veeser, L. 1978 Phys. Rev. Lett. 40, 1391.CrossRefGoogle Scholar
Wark, J.S. 1992 Appl. Phys. Lett. 61, 651.CrossRefGoogle Scholar
Woolsey, N.C. 1994 Annual Report of Central Laser Facility of Rutherford Appleton Laboratory, p. 67.Google Scholar