Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-08T03:04:54.128Z Has data issue: false hasContentIssue false

Single event laser fusion using ns-MJ laser pulses

Published online by Cambridge University Press:  05 December 2005

GEORGE H. MILEY
Affiliation:
Fusion Studies Laboratory, University of Illinois, Urbana, Illinois
H. HORA
Affiliation:
Department of Theoretical Physcis, University of New South Wales, Sydney, Australia School Quantitative Methods of Mathematical Science, University of Western Sydney, Perth, Australia
F. OSMAN
Affiliation:
School Quantitative Methods of Mathematical Science, University of Western Sydney, Perth, Australia
P. EVANS
Affiliation:
School Quantitative Methods of Mathematical Science, University of Western Sydney, Perth, Australia
P. TOUPS
Affiliation:
School Quantitative Methods of Mathematical Science, University of Western Sydney, Perth, Australia

Abstract

Studies of single-event laser-target interaction for fusion reaction schemes leading to volume ignition are discussed. Conditions were explored where single-event ns-laser pulses give rise to temperatures sufficient for volume ignition. Thus, ignition is possible, particularly if X-ray reabsorption is sufficiently high. Unfortunately, this scheme requires laser pulses with energies above 5 MJ and target densities of compressed DT above 1000 g/cm−3. Both requirements are quite demanding for near term systems. Nevertheless the present state technology and the detailed knowledge about volume ignition at direct drive are a basis. Systems as NIF or LMJ can well confirm these physics-clarified conditions and the technology for large laser systems with sufficient repetition rate and for a drastic reduction of the size and costs is necessary and possible and by physics similar to the known reductions in transistor development.

Type
Workshop on Fast High Density Plasma Blocks Driven By Picosecond Terawatt Lasers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. (1995). Thermonuclear burn performance of volume-ignited and centrally ignited bare deuterium-tritium microspheres. Jpn. J. Appl. Phys. 43, 19801892.Google Scholar
Azechi, H., Jitsuno, T., Kanabe, M., Mima, K., Miyanaga, N, Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norreys, P.A., Setsuhara, Y., Takagi, M., Yamanaka M., &Yamanaka, C. (1991). High-density compression experiments at ILE, Osaka. Laser Part. Beams 9, 193207.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.Google Scholar
Basko, M.M. (1990). Spark and volume ignition of DT and D2 microspheres. Nucl. Fusion 30, 24432452.Google Scholar
Basov, N.G. & Krokhin, O.N. (1963). Laser Driven Thermonuclear Reactions, Vol. 2, pp. 13731379. Paris: Dunod.
Broad, W.J. (1988). Underground Nuclear Explosions N.Y. Times 137, 451.Google Scholar
Campbell, E.M., Baldwin, D. & Blue, N. (2000). Congratulation message for Professor Chiyoe Yamanaka. In Light and Shade: Festschrift to the 77th Birthday of Chiyoe Yamanaka, pp. 470472. Osaka: ILE.
Canaud, B., Fortin, X., Garaude, F., Mayer, C.& Phillippe, F. (2004). Progress in direct-drive fusion studies in laser magajoule. Laser Part. Beams 22, 109114.Google Scholar
Cavailler, C., Fleurot, N., Longjeret, T. & Di-Nicola, J.-M. (2004). Prospects and progress at LIL and Megajoule. Plasma Phys. Contr. Fusion 46, B135B142.Google Scholar
Chen, F.F. (1974). Physical mechanisms for laser-plasma parametric instabilities. In Laser Interaction and Related Plasma Phenomena (H. Schwarz et al., Eds.), Vol. 3A, pp. 291313. New York: Plenum.
Dawson, J.M. (1964). On the production of plasma by giant pulse lasers. Phys. Fluids 7, 981987.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Floux, F. (1970). High density and high temperature laser produced plasmas. In Laser Interaction and Related Plasma Phenomena (H. Schwarz et al., Eds.), Vol. 1, pp. 447475, New York: Plenum.
Fraley, G.S., Linnebur, E.J. & Mason, R.J. (1974). Thermonuclear burn characteristics of compressed deuterium-tritium microspheres. Phys. Fluids 17, 474489.Google Scholar
Gabor, D. (1953). Collective model for particle interaction in plasmas. Proc. Royal Soc. London A 213, 7392.Google Scholar
Giulietti, A., Coe, S., Afshar-Rad, D.M., Willi, O. & Danson, C. (1991). Experimental study of beam-plasma instabilities in long scale length laser produced plasmas. In Laser Interaction and Related Plasma Phenomena (H. Hora et al., Eds.), Vol. 9, p. 261272. New York: Plenum.
Hora, H. & Miley, G.H. (1986). Success of new avenues in laser. Fusion Laser Focus 22, 94100.Google Scholar
He, X.T. & Li, Y.S. (1994). Physical processes of volume ignition and thermonuclear burn for high-gain inertial confinement fusion. In Laser Interaction and Related plasma Phenomena (H.G. Miley, Ed.), pp. 334347. New York: AIP.
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-Loss of heavy-ions in a plasma target. Phys. Rev A 42, 23132321.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hora, H. & Pfirsch, D. (1970). Laser energies necessary for inertial confinement nuclear fusion plasma, Conference Digest, 6th Quantum Electronics Conference, Kyoto, pp. 1011.
Hora, H. & Aydin, M. (1992). Suppression of stochastic pulsation in laser-plasma interaction by smoothing methods. Phys. Rev. A 45, 61236126.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.
Hora, H. (1969a). Nonlinear Confining and Deconfining Forces Associated with the interaction laser radiation with plasma. Phys. Fluids 12, 182191.Google Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.Google Scholar
Hora, H. (1971). Application of laser produced plasma for controlled thermonuclear fusion. In Laser Interaction and Related Plasma Phenomena (H. Schwarz et al., Eds.), Vol. 1, 427445. New York: Plenum.
Hora, H. (1964). Estimations of heating of plasma by lasers. Institute of Plasma Physics, Report 6/23 (National Research Council of Canada, Technical Translation 1193, Ottawa 1965) 27 pages.
Hora, H. (1969b). Self-focusing of laser beams in plasma by ponderomotive forces. Zeitschr. f. Physik 226, 159.Google Scholar
Hora, H. (1985). The transient electrodynamic forces at laser-plasma Interaction. Phys. Fluids 28, 37043706.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. (2005). Difference between relativistic petawatt-picosecond laser-plasma interaction and subrelativistic plasma-block generation. Laser Part. Beams 23, 441451.Google Scholar
Hora, H. & Aydin, M. (1999). Increased gain for ICF with red light at suppression of stochastic pulsation by smoothing. Laser Part. Beams 17, 209215.Google Scholar
Hora, H., Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, K., Yamanaka, M. & C., Yamanaka, C. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. J. Plasma Phys 60, 743760.Google Scholar
Hora, H., Miley, G.H., Toups, P., Evans, P., Osman, F., Castillo, R., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Yamanaka, C. & Yamanaka, T. (2003). Single event high compression inertial confinement fusion at low temperatures compared with the two step fast ignitor. J. Plasma Phys. 69, 413430.Google Scholar
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertial confined DT plasma due to reheat. Zeitschrift f. Naturforsch. 33A, 890894.Google Scholar
Hora, H., Pfirsch, D. & Schlüter, A. (1967). Acceleration of inhomogeneous plasma by laser light. Zeitsch. Naturforsch. 22A, 278280.Google Scholar
Johzaki, T., Nakao, Y., Murakami, M., Nishihara, K., Nakashima, H. & Kudo, K. (1996). Ignition and burned dynamics of low temperature ignition D-T-Targets. In Laser Interaction and Related Plasma Phenomena (S. Nakai & G.H. Miley, Eds.), AIP Conf. Proceedings 369, 149154.Google Scholar
Kidder, R.E. (1974). Laser compression of matter—Optical owner and energy requirements. Nucl. Fusion 14, 797803.Google Scholar
Kirkpatrick, R. & Wheeler, J.A. (1981). The physics of DT ignition in small fusion targets. Nucl. Fusion 21, 389401.Google Scholar
Labaune, C., Baton, T., Jalimand, H., Baldis, H.A. & Peasme, D. (1992). Fulmination in long scale length plasma: Experiment as evidence of effects of laser spatial coherence. Phys. Fluids B4, 22242231.Google Scholar
Lackner, K.S., Colgate, S.A., Johnson, N.L., Kirkpatrick, R.C., Menikoff, R. & Petschek A.G. (1994). Equilibrium ignition for ICF capsules. In Laser Interaction and Related Plasma Phenomena (G.H. Miley, Ed.). AIP Conference Proceedings 318, 356361.Google Scholar
Maddever, R.A.M., Luther-Davies, B. & Dragila, B. (1990). Pulsation of 1ωo and 2ωo emission from laser-produced plasma: Experiment. Phys. Rev. A41, 21542175.Google Scholar
Martinez-Val, J.-M., Eliezer, S. & Piera, M. (1994). Volume ignition targets for heavy ion fusion. Laser Part. Beams 12, 681717.Google Scholar
Mourou, G. & Tajima, T. (2002). Ultraintense lasers and their applications. In Inertial Fusion Science and Applications 2001 (K.A. Tanaka, D.D. Meyerhofer & J. Meyer-ter-Vehn, Eds.), pp. 831839. Paris: Elsevier.
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospective. Laser Part. Beams 22, 512.Google Scholar
Nuckolls, J.H. (1974). Laser-induced implosion and thermonuclear burn. In Laser Interaction and Related Plasma Phenomena (H. Schwarz et al., Eds.), Vol 3A, pp. 399325. New York: Plenum.
Osman, F., Hora, H., Cang, Y., Evans, P., Cao, H., Liu, H., He, X.T., Badziak, J., Parys, A.B., Wolowski, J., Woryna, E., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2004a). Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self focusing for high gain laser fusion. Laser Part. Beams 22, 8388.Google Scholar
Osman, F. & Hora, H. (2004a). Suppression of instabilities and stochastic pulsation at laser-plasma interaction by beam smoothing. Am. J. Appl. Sci. 1, 7682.Google Scholar
Osman, F., Beech, R. & Hora, H. (2004b). Solutions of the nonlinear paraxial equation due to laser plasma-interactions. Laser Part. Beams 22, 6974.Google Scholar
Ramirez, J., Ramis, R. & Sanz, J. (2004). One-dimensional model for a laser-ablated slab under acceleration. Laser Interact. Relat. Plasma Phenomena 22, 183188.Google Scholar
Ray, P.S. & Hora, H. (1978). On the thermalization of energetic charged particles in fusion plasma with quantum electrodynamics considerations. Zeitsch. f. Naturforsch 32A, 538543.Google Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the helix laser system at GSI. Laser Part. Beams 23, 503511.Google Scholar
Schmalz, R.F. (1986). Free unsteady expansion of polytrophic gas: Self-similarity solutions. Phys. Fluids 29, 13891397.Google Scholar
Soures, J., Mccrory, R.L., Verdon, C.P., Babushkin, A., Bar, R.E., Boehly, T.R, Boni, R., Bradley, D.K., Brown, D.L., Craxton, R.S., Delettrez, J.A., Donaldson, W.R., Epstein, R., Jaanimagk, P.A. & Jacobs, S.D. (1996). Direct-drive laser-fusion experiments with the OMEGA, 60-beam, >40 kJ, ultraviolet laser system. Phys. Plasmas 3, 21082112.Google Scholar
Stening, R.J., Kasotakis, G., Khoda-Bakhsh, R., Pieruschka, P., Kuhn, E., Miley, G. & Hora, H. (1992). Volume ignition for inertial confinement fusion. In Laser Interaction and Related Plasma Phenomena (G.H. Miley & H. Hora, Eds.), Vol. 10, pp. 347390. New York: Plenum.
Tabak, M., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth J., Campbell, E.M., Perry, M.D., &Mason, R.J. (1994). Ignition and high-gain with ultra powerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Tahir, N.A. & Hoffmann, D.H.H. (1994). Development of high-gain reduced tritium targets for inertial fusion. Fusion Engin. Design 24, 413418.Google Scholar
Takabe, H., Yamanaka, M., Mima, K., Yamanaka, C., Azechi, N., Myianaka, N., Nakatsuka, M., Jitsuno, T., Norimatsu, T., Takagi,M., Nishimura, H., Nakai, M., Yabe, T., Sasaki, T., Yishida, K., Nishihara, K., Kato, Y., Izawa, Y., Yamanaka, T., &Nakai, S. (1988). Scaling of implosion experiments for high neutron yield. Phys. Fluids 31, 28842893.Google Scholar
Tarter, C.B. (2002). Inertial fusion and high-energy-density science in the United States. In Inertial Fusion Science and Applications 2001 (K.A. Tanaka, D.D. Meyerhofer & J. Meyer-ter-Vehn, Eds.), pp. 916. Paris: Elsevier.
Wilks, S.C. (2005). Energetic proton generation in ultra-intends laser solid interaction and target normal sheath acceleration. Laser Part. Beams 23, (in print)Google Scholar
Wu, Yanqing, Han, Shensheng, Song, Xiangyang, Xu, Zhizhan, Tang, Yuhui, Shuai, Bing & Yanqing Wu (2001). The control of laser-plasma parametric instabilities and the temperature of suprathermal electrons with ultra broad bandwidth frequency modulated laser pulse. Plasma Phys. Contr. Fusion 43, 469482.Google Scholar