Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T11:39:39.160Z Has data issue: false hasContentIssue false

A setup for studies of laser-driven proton acceleration at the Lund Laser Centre

Published online by Cambridge University Press:  19 December 2014

B. Aurand*
Affiliation:
Department of Physics, Lund University, 22100 Lund, Sweden
M. Hansson
Affiliation:
Department of Physics, Lund University, 22100 Lund, Sweden
L. Senje
Affiliation:
Department of Physics, Lund University, 22100 Lund, Sweden
K. Svensson
Affiliation:
Department of Physics, Lund University, 22100 Lund, Sweden
A. Persson
Affiliation:
Department of Physics, Lund University, 22100 Lund, Sweden
D. Neely
Affiliation:
Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
O. Lundh
Affiliation:
Department of Physics, Lund University, 22100 Lund, Sweden
C.-G. Wahlström
Affiliation:
Department of Physics, Lund University, 22100 Lund, Sweden
*
Address correspondence and reprint request to Bastian Aurand, Department of Physics, Lund University, 22100 Lund, Sweden. E-mail: bastian.aurand@uni-duesseldorf.de

Abstract

We report on a setup for the investigation of proton acceleration in the regime of target normal sheath acceleration. The main interest here is to focus on stable laser beam parameters as well as a reliable target setup and diagnostics in order to do extensive and systematic studies on the acceleration mechanism. A motorized target alignment system in combination with large target mounts allows for up to 340 shots with high repetition rate without breaking the vacuum. This performance is used to conduct experiments with a split mirror setup exploring the effect of spatial and temporal separation between the pulses on the acceleration mechanism and on the resulting proton beam.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aurand, B., Kuschel, S., Jäckel, O., Rödel, C., Zhao, H.Y., Herzer, S., Paz, A.E., Bierback, J., Polz, J., Elkin, B., Kamakar, A., Gibbon, P., Kaluza, M.C. & Kuehl, T. (2014). Enhanced radiation pressure-assisted acceleration by temporally tuned counter-propagating pulses. Nucl. Inst. Meth. A 740, 033031.CrossRefGoogle Scholar
Brenner, C.M., Green, J.S., Robinson, A.P.L., Carroll, D.C., Dromey, B., Foster, P.S., Kar, S., Li, Y.T., Markey, K., Spindloe, C., Streeter, M.J.V., Tolley, M., Wahlström, C.-G., Xu, M.H., Zepf, M., McKenna, P. & Neely, D. (2011). Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets. Lasers Part. Beams 29, 345351.CrossRefGoogle Scholar
Burza, M., Gonoskov, A., Genoud, G., Persson, A., Svensson, K., Quinn, M., McKenna, P., Marklund, M. & Wahlström, C.-G. (2011). Hollow microspheres as targets for staged laser-driven proton acceleration. New J. Phys. 13, 013030.Google Scholar
Cartwright, B.G. & Shirk, E.K. (1978). A nuclear-track-recording polymer of unique sensitivity and resolution. Nucl. Inst. Meth. A 153, 457460.Google Scholar
Coury, M., Carroll, D.C., Robinson, A.P.L., Yuan, X.H., Brenner, C.M., Burza, M., Gray, R.J., Quinn, M.N., Lancaster, K.L., Li, Y.T., Lin, X.X., Tresca, O., Wahlström, C.-G., Neely, D. & McKenna, P. (2012). Influence of laser irradiated spot size on energetic electron injection and proton acceleration in foil targets. Appl. Phys. Lett. 100, 074105.Google Scholar
Coury, M., Carroll, D.C., Robinson, A.P.L., Yuan, X.H., Brenner, C.M., Burza, M., Gray, R.J., Quinn, M.N., Lancaster, K.L., Li, Y.T., Lin, X.X., Tresca, O., Wahlström, C.-G., Neely, D. & McKenna, P. (2013). Injection and transport properties of fast electrons in ultra-intense laser-solid interactions. Phys. Plasmas 20, 043104.Google Scholar
Daido, H., Nishiuchi, M. & S. Pirozhkov, S. (2012). Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401.Google Scholar
Desforges, F.G., Hansson, M., Ju, J.Senje, L., Auder, T.L., Dobosz-Dufrenoy, S., Persson, A., Lundh, Wahlström, C.-G. & Cros, B. (2014). Reproducibility of electron beams from laser wakefield acceleration in capillary tubes. Nucl. Instrum. Meth. A 740, 5459.Google Scholar
Green, J., Borghesi, M., Brenner, C.M., Carroll, D.C., Dover, N.P., Foster, P.S., Gallegos, Pl., Green, S., Kirby, D., Kirkby, K.J., McKenna, P., Merchant, M.J., Najmudin, Z., Palmer, C.A.J., Parker, D., Prasad, R., Quinn, K.E., Rajeev, P.P., Read, M.P., Romagnani, L., Schreiber, J., Streetse, M.J.V., Tresca, O., Wahlström, C.-G., Zeft, M. & Neely, D. (2011). Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams. SPIE Proc. 8079, 807991.Google Scholar
Hansson, M., Senje, L., Persso, A., Lundh, O., Wahlström, C.-G., Desforges, F.G., Ju, J., Audet, T.L., Cros, B., Dobosz, S. & Monot, P. (2014). Enhanced stability of laser wakefield acceleration using dielectric capillary tubes. Phys. Rev. ST AB 17, 031303.Google Scholar
Hartmann, J. (1900). Bemerkungenüber den Bau und die Justirung von Spektrographen. Z. Instrumentenkunde 20, 1727, 47–58.Google Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernández, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nat. 439, 441444.CrossRefGoogle ScholarPubMed
Passoni, M., Bertagna, L. & Zani, A. (2010). Target normal sheath acceleration: Theory, comparison with experiments and future perspectives. New J. Phys. 12, 045012.CrossRefGoogle Scholar
Primot, J. & Sogno, L. (1995). Achromatic three-wave (or more) lateral shearing interferometer. Z. JOSA A 12, 26792685.CrossRefGoogle Scholar
Ramakrishna, B., Murakami, M., Borghesi, M., Ehrentraut, L., Nickles, P.V., Schürer, M., Steinke, S., Psikal, J., Tikhonchuk, V. & Ter-Avetisyan, S. (2010). Laser-driven quasimonoenergetic proton burst from water spray target. Phys. Plasmas 17, 083113.CrossRefGoogle Scholar
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlström, C.-G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt-laser plasma interactions. Nat. Phys. 3, 5862.Google Scholar
Ruprecht, A.K., Pruss, C., Tiziani, H.J., Wolfgan, O., Peter, L., Arndt, L., Mohr, J. & Lehmann, P. (2005). Confocal micro-optical distance sensor: Principle and design. Z. SPIE Proc. 5856, 128135.Google Scholar
Schreiber, J., Bell, F.Grüner, F., Schramm, U., Geissler, M., Schnüger, Ter-Avetisyan, S., Hegelich, B.M., Cobble, J., Brambrink, E., Fuchs, J., Auderbert, P. & Habs, D. (2006). Analytical model for ion acceleration by high-intensity laser pulses. Phys. Rev. ST AB 97, 045005.Google Scholar
Schwoerer, H., Pfotenhauer, S.Jäckel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nat. 439, 445448.Google Scholar
Small, R.D., Sernas, V.A. & Page, R.H. (1972). Single beam Schlieren interferometer using a Wollaston prism. Appl. Opt. 11, 858862.Google Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.Google Scholar
Tresca, O., Carroll, D.C., Yuan, X.H., Aurand, B., Bagnoud, V., Brenner, C.M., Coury, M., Fils, J., Gray, R.J., Kühl, T., Li, C., Li, Y.T., Lin, X.X., Quinn, M.N., Evans, R.G., Zielbauer, B., Roth, M., Neely, D. & McKenna, P. (2011). Controlling the properties of ultra-intense laser proton sources using transverse refluxing of hot electrons in shaped mass-limited targets. Plasma Phys. Contr. Fusion 53, 105008 .CrossRefGoogle Scholar
Wilks, S.C., Langon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snaverly, R.A. (2001). Energetic proton generation in ultra- intense laser solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar