Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T11:00:46.670Z Has data issue: false hasContentIssue false

Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation

Published online by Cambridge University Press:  15 March 2011

J. Krása*
Affiliation:
Institute of Physics, ASCR, Prague, Czech Republic
A. Lorusso
Affiliation:
Department of Physics of Lecce, Laboratorio di Elettronica Applicata e Strumentazione, INFN of Lecce, Lecce, Italy
V. Nassisi
Affiliation:
Department of Physics of Lecce, Laboratorio di Elettronica Applicata e Strumentazione, INFN of Lecce, Lecce, Italy
L. Velardi
Affiliation:
Department of Physics of Lecce, Laboratorio di Elettronica Applicata e Strumentazione, INFN of Lecce, Lecce, Italy
A. Velyhan
Affiliation:
Institute of Physics, ASCR, Prague, Czech Republic
*
Address correspondence and reprint requests to: J. Krása, Institute of Physics, ASCR, Na Slovance 2, 18 221 Prague 8, Czech Republic. E-mail: krasa@fzu.cz

Abstract

Time-of-flight spectra of C, Fe, and Si ions produced with the use of a KrF excimer laser have been analyzed. Ion currents were collected by Faraday cups and their responses were analyzed using a detector signal function. This function was derived from shifted Maxwell-Boltzmann velocity distribution, in order to uncover the contribution of partial currents of all the ionized species constituting the expanding plasma plume. The deconvolution method allowed to estimate parameters of the plasma, such as the ion temperature and the center-of-mass velocities of expanding ionized species. Furthermore, the linear charge-state dependence of the center-of-mass velocity has revealed the contribution of hydrodynamic and electrostatic forces to the expansion velocity of the plasma. The nearly isotropic distribution of the center-of-mass velocity indicates that the shape of the plasma plume is determined mainly by the angular distribution of the ionization degree of ions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A., Platonov, K. & Kawata, S. (2009). Ion acceleration by short high intensity laser pulse in small target sets. Laser Part. Beams 27, 449457.CrossRefGoogle Scholar
Badziak, J., Kozlov, A.A., Makowski, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigations of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams, 17, 323329.CrossRefGoogle Scholar
Bin, J.H., Lei, A.L., Yang, X.Q., Huang, L.G., Yu, M.Y., Yu, W. & Tanaka, K.A. (2009). Quasi-monoenergetic proton beam generation from a double-layer solid target using an intense circularly polarized laser. Laser Part. Beams 27, 485490.CrossRefGoogle Scholar
Capitelli, M., Casavola, A., Colonna, G. & De Giacomo, A. (2004). Laser-induced plasma expansion: theoretical and experimental aspects. Spectrochim. Acta Part B, 59, 271289.CrossRefGoogle Scholar
Doria, D., Lorusso, A., Belloni, F. & Nassisi, V. (2004). Characterization of a nonequilibrium XeCl laser-plasma by a movable Faraday cup. Rev. Sci. Instrum. 75, 387392.CrossRefGoogle Scholar
Forslund, D. (1980). Coronal expansion with multiple charge states. In Inertial fusion program: progress report LA-7587-PR. Los Alamos: Los Alamos Scientific Laboratory, pp. 9396.Google Scholar
Gitomer, S.J., Jones, R.D., Begay, F., Ehler, A.W., Kepphart, J.F. & Kristal, R. (1986). Fast ions and hot electrons in the laser-plasma interactions. Phys. Fluids 29, 26792688.CrossRefGoogle Scholar
Haseroth, H. & Hora, H. (1996). Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources. Laser Part. Beams, 14, 393438.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Kálal, M., Martínková, J., Ullschmied, J., Krouský, E., Mašek, K., Pfeifer, M., Rohlena, K., Skála, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams, 28 189196.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Demchenko, N.N., Gus'kov, S.Yu., Kálal, M., Ullschmied, J., Krouský, E., Mašek, K., Pfeifer, M., Rohlena, K., Skála, J. & Pisarczyk, P. (2009). Experimental and theoretical investigations of mechanisms responsible for plasma jets formation at PALS. Laser Part. Beams 27, 415427.CrossRefGoogle Scholar
Kelly, R. & Dreyfus, R.W. (1988). On the effect of Knudsen-layer formation on studies of vaporazation, sputtering, and desorption. Surf. Sci. 198, 263276.CrossRefGoogle Scholar
Krása, J., Jungwirth, K., Krouský, E., Láska, L., Rohlena, K., Pfeifer, M., Ullschmied, J. & Velyhan, A. (2007). Temperature and centre-of-mass energy of ions emitted by laser-produced polyethylene plasma. Plasma Phys. Control. Fusion 49, 16491659.CrossRefGoogle Scholar
Krása, J., Velyhan, A., Jungwirth, K., Krouský, E., Láska, L., Rohlena, K., Pfeifer, M. & Ullschmied, J. (2009). Repetitive outbursts of fast carbon and fluorine ions from sub-nanosecond laser-produced plasma. Laser Part. Beams 27, 241248.CrossRefGoogle Scholar
Láska, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krása, J., Krouský, E., Parys, P., Pfeifer, M., Rohlena, K., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J. & Wołowski, J. (2007 a). Factors influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.CrossRefGoogle Scholar
Láska, L., Badziak, J., Gammino, S., Jungwirth, K., Kasperczuk, A., Krása, J., Krouský, E., Kubeš, P., Parys, P., Pfeifer, M., Pisarczyk, T., Rohlena, K., Rosiński, M., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J., Velyhan, A. & Wołowski, J. (2007 b). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 25, 549556.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Krása, J., Krouský, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullschmied, J., Gammino, S., Torrisi, L., Badziak, J., Parys, P., Rosiński., M., Ryć, L.&Wołowski, J. (2008). Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser Part. Beams 26, 555565.CrossRefGoogle Scholar
Láska, L., Krása, J., Velyhan, A., Jungwirth, K., Krouský, E., Margarone, D., Pfeifer, M., Rohlena., K, Ryć., L, Skála., J, Torrisi., L. & Ullschmied, J. (2009). Experimental studies of generation of similar to 100 MeV Au-ions from the laser-produced plasma. Laser Part. Beams 27, 137147.CrossRefGoogle Scholar
Liu, M.P., Xie, B.S., Huang, Y.S., Liu, J. & Yu, M.Y. (2009). Enhanced ion acceleration by collisionless electrostatic shock in thin foils irradiated by ultraintense laser pulse. Laser Part. Beams 27, 327333.CrossRefGoogle Scholar
Lorusso, A., Krása, J., Rohlena, K., Nassisi, V., Belloni, F. & Doria, D. (2005). Charge losses in expanding plasma created by an XeCl laser. Appl. Phys. Lett. 86, 081501.CrossRefGoogle Scholar
Lorusso, A., Belloni, F., Doria, D., Nassisi, V., Krása, J. & Rohlena, K. (2006). Significant role of the recombination effects for a laser ion source. J. Phys. D: Appl. Phys. 39, 294300.CrossRefGoogle Scholar
Miotello, A. & Kelly, R. (1999). On the origin of the different velocity peaks of particles sputtered from surfaces by laser pulses or charged-particle beams. Appl. Surf. Sci. 138–139, 4451.CrossRefGoogle Scholar
Steinke, S., Henig, A., Schnürer, M., Sokollik, T., Nickles, P.V., Jung, D., Kiefer, D., Horlein, R., Schreiber, J., Tajima, T., Yan, X.Q., Hegelich, M., Meyer-Ter-Vehn, J., Sandner, W. & Habs, D. (2010). Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser Part. Beams 28, 215221.CrossRefGoogle Scholar
Tajima, T. & Dawson, J. M. (1979). Laser electron accelerator. Phys Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Thum-Jäger, A. & Rohr, K. (1999). Angular emission distributions of neutrals and ions in laser ablated particle beams. J. Phys. D: Appl. Phys. 32, 28272831.CrossRefGoogle Scholar
Torrisi, L., Gammino, S. & Andò, L. (2002). Non-equilibrium plasma production by pulsed laser ablation of gold. Radiat. Eff. Defects Solids, 157, 333346.CrossRefGoogle Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., Mackinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar