Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T16:36:47.860Z Has data issue: false hasContentIssue false

Relativistic electron beam source with uniform high-density emitters by pulsed power generators

Published online by Cambridge University Press:  22 April 2009

Limin Li*
Affiliation:
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Lie Liu
Affiliation:
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Qifu Xu
Affiliation:
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Guoxin Chen
Affiliation:
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Lei Chang
Affiliation:
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Hong Wan
Affiliation:
Department of Material Engineering and Applied Chemistry, National University of Defense Technology, Changsha, People's Republic of China
Jianchun Wen
Affiliation:
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
*
Address correspondence and reprint requests to: Limin Li, College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, People's Republic of China. E-mail: newages1979@yahoo.com.cn

Abstract

The remaining challenges, confronting high-power microwave sources and pulsed power technology, stimulate the development of robust relativistic electron beam sources. This paper presents a carbon-fiber-aluminum cathode with high-density uniform emitters, which was tested in a single pulsed power generator (~450 kV, ~350 ns, ~50 Ω) and a repetitive one (350 kV, <10 ns, 150 Ω, and 100 Hz). The distribution and development of the cathode plasma was observed by time-and-space resolved diagnostics, and the uniformity of electron beam density was checked by taking x-ray images. A quasi-stationary behavior of the cathode plasma expansion was observed. It was found that the uniformity of the extracted electron beam is satisfactory in spite of individual plasma jets on the cathode surface. Under repetitively pulsed operation, this cathode exhibited a good shot-to-shot reproducibility even in poor vacuum. This new class of plasma cathodes offers a promising prospect of developing relativistic electron beam sources.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barker, R.J., Booske, J.H., Luhmann, N.C. & Nusinovich, G.S. (2005). Modern Microwave and Millimeter-Wave Power Electronics. New York: IEEE/Wiley.CrossRefGoogle Scholar
Beilis, I.I. (2007). Laser plasma generation and plasma interaction with ablative target. Laser Part. Beams 25, 5363.CrossRefGoogle Scholar
Booske, J.H. (2008). Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation. Phys. Plasmas 15, 055502.CrossRefGoogle Scholar
Burdovitsin, V.A. & Oks, E.M. (2008). Fore-vacuum plasma-cathode electron sources. Laser Part. Beams 26, 619635.CrossRefGoogle Scholar
Huang, Y., Duan, X., Lan, X., Tan, Z., Wang, N., Tang, X. & He, Y. (2008). Time-dependent neutral-plasma isothermal expansions into a vacuum. Laser Part. Beams 26, 671675.CrossRefGoogle Scholar
Korovin, S.D., Litvinov, E.A., Mesyats, G.A., Rostov, V.V., Rukin, S.N., Shpak, V.G. & Yalandin, M.I. (2006). Degradation and recovery of the emission from a graphite cathode in relation to the repetition frequency of nanosecond accelerating pulses. IEEE Trans. Plasma Sci. 34, 17711776.CrossRefGoogle Scholar
Krasik, Y.E., Dunaevsky, A. & Felsteiner, J. (2001). Plasma sources for high-current electron beam generation. Phys. Plasmas 8, 24662472.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. (1987). Fluid Mechanics. Oxford: Pergmon.Google Scholar
Lau, Y.Y. (2001). Simple theory for the two-dimensional child-langmuir law. Phys. Rev. Lett. 87, 278301.CrossRefGoogle ScholarPubMed
Li, G.L., Yuan, C.W., Zhang, J.Y., Shu, T. & Zhang, J. (2008 a). A diplexer for gigawatt class high power microwaves. Laser Part. Beams 26, 371377.CrossRefGoogle Scholar
Li, L.M., Liu, L., Chang, L., Wan, H., Wen, J.C. & Liu, Y.G. (2009 a). Characteristics of polymer velvet as field emitters under high-current pulsed discharge. Appl. Surf. Sci. 255, 45634568.CrossRefGoogle Scholar
Li, L.M., Liu, L., Wan, H., Zhang, J., Wen, J.C. & Liu, Y.G. (2009 b). Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes. Plasma Sources Sci. Technol. 18, 015011.CrossRefGoogle Scholar
Li, L.M., Liu, L., Wen, J.C. & Liu, Y.G. (2009 c). Effects of CsI coating of carbon fiber cathodes on the microwave emission from a triode virtual cathode oscillator. IEEE Trans. Plasma Sci. 37, 1522.CrossRefGoogle Scholar
Li, L.M., Liu, L., Wen, J.C., Men, T. & Liu, Y.G. (2008 b). An intense-current electron beam source with low-level plasma formation. J. Phys. D: Appl. Phys. 41, 125201.CrossRefGoogle Scholar
Li, L.M., Liu, L., Xu, Q.F., Wen, J.C. & Liu, Y.G. (2008 c). Design of a simple annular electron beam source and its operating characteristics in single and repetitive shot modes. Rev. Sci. Instrum. 79, 094701.CrossRefGoogle ScholarPubMed
Liao, Q., Zhang, Y., Huang, Y., Qi, J., Gao, Z., Xia, L. & Zhang, H. (2007). Explosive field emission and plasma expansion of carbon nanotube cathodes. Appl. Phys. Lett. 90, 151504.CrossRefGoogle Scholar
Litvinov, E.A. (1985). Theory of explosive electron emission. IEEE Trans. Electr. Insul. EI-20, 683689.CrossRefGoogle Scholar
Liu, J.L., Yin, Y., Ge, B., Zhan, T.W., Chen, X.B. & Feng, J.H. (2007 a). An electron-beam accelerator based on spiral water PFL. Laser Part. Beams 25, 593599.CrossRefGoogle Scholar
Liu, J.L., Zhan, T.W., Zhang, J., Liu, Z.X., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007 b). A Tesla pulse transformer for spiral water pulse forming line charging. Laser Part. Beams 25, 305312.CrossRefGoogle Scholar
Liu, L., Li, L.M., Zhang, J., Zhang, X.P., Wen, J.C. & Liu, Y.G. (2008 a). A series of tufted carbon fiber cathodes designed for different high power microwave sources. Rev. Sci. Instrum. 79, 064701.CrossRefGoogle ScholarPubMed
Liu, R., Zou, X., Wang, X., He, L. & Zeng, N. (2008 b). X-pinch experiments with pulsed power generator (PPG-1) at Tsinghua University. Laser Part. Beams 26, 3336.CrossRefGoogle Scholar
Liu, R., Zou, X., Wang, X., Zeng, N. & He, L. (2008 c). X-ray emission from an X-pinch and its applications. Laser Part. Beams 26, 455460.CrossRefGoogle Scholar
Ozur, G.E., Proskurovsky, D.I., Rotshtein, V.P. & Markov, A.B. (2003). Production and application of low-energy, high-current electron beams. Laser Part. Beams 21, 157174.CrossRefGoogle Scholar
Parker, R.K., Anderson, R.E. & Duncan, C.V. (1974). Plasma-induced field emission and the characteristics of high-current relativistic electron flow. J. Appl. Phys. 45, 24632479.CrossRefGoogle Scholar
Roy, A., Menon, R., Mitra, S., Kumar, D.D.P., Kumar, S., Sharma, A., Mittal, K.C., Nagesh, K.V. & Chakravarthy, D.P. (2008). Impedance collapse and beam generation in a high power planar diode. J. Appl. Phys. 104, 014904.CrossRefGoogle Scholar
Shiffler, D., Haworth, M., Cartwright, K., Umstattd, R., Ruebush, M., Heidger, S., Lacour, M., Golby, K., Sullivan, D., Duselis, P. & Luginsland, J. (2008 a). Review of cold cathode research at the Air Force Research Laboratory. IEEE Trans. Plasma Sci. 36, 718728.CrossRefGoogle Scholar
Shiffler, D., Heidger, S., Cartwright, K., Vaia, R., Liptak, D., Price, G., Lacour, M. & Golby, K. (2008 b). Materials characteristics and surface morphology of a cesium iodide coated carbon velvet cathode. J. Appl. Phys. 103, 013302.CrossRefGoogle Scholar
Shiffler, D., Ruebush, M., Haworth, M., Umstattd, R., Lacour, M., Golby, K., Zagar, D. & Knowles, T. (2002). Carbon velvet field-emission cathode. Rev. Sci. Instrum. 73, 43584362.CrossRefGoogle Scholar
Shiffler, D., Ruebush, M., Lacour, M., Golby, K., Umstattd, R., Clark, M.C., Luginsland, J., Zagar, D. & Sena, M. (2001). Emission uniformity and emission area of explosive field emission cathodes. Appl. Phys. Lett. 79, 28712873.CrossRefGoogle Scholar
Shiffler, D.A., Luginsland, J., Ruebush, M., Lacour, M., Golby, K., Cartwright, K., Haworth, M. & Spencer, T. (2004). Emission uniformity and shot-to-shot variation in cold field emission cathodes. IEEE Trans. Plasma Sci. 32, 12621266.CrossRefGoogle Scholar
Umstattd, R.J., Schlise, C.A. & Wang, F. (2005). Gas evolution during operation of a CsI-coated carbon fiber cathode in a closed vacuum system. IEEE Trans. Plasma Sci. 33, 901910.CrossRefGoogle Scholar
Vekselman, V., Gleizer, J., Yarmolich, D., Felsteiner, J., Krasik, Y., Liu, L. & Bernshtam, V. (2008). Plasma characterization in a diode with a carbon-fiber cathode. Appl. Phys. Lett. 93, 081503.CrossRefGoogle Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.CrossRefGoogle Scholar
Zou, X.B., Liu, R., Zeng, N.G., Han, M., Yuan, J.Q., Wang, X.X. & Zhnag, G.X. (2006). A pulsed power generator for x-pinch experiments. Laser Part. Beams 24, 503509.CrossRefGoogle Scholar