Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T15:48:15.672Z Has data issue: false hasContentIssue false

Relativistic acceleration of micro-foils with prospects for fast ignition

Published online by Cambridge University Press:  12 March 2012

Shalom Eliezer*
Affiliation:
Soreq NRC, Yavne Israel and Institute of Nuclear Fusion, Polytechnic University of Madrid, Madrid, Spain
*
Address correspondence and reprint requests to: Shalom Eliezer, Institute of Nuclear Fusion, Polytechnic University of Madrid, Madrid, Spain. E-mail: shalom.eliezer@gmail.com

Abstract

In this work, it is suggested that the ponderomotive force, induced by a multi-petawatt laser on the interface of a vacuum with solid target, can accelerate a micro-foil to relativistic velocities. The extremely high velocities of the micro-foil can be achieved due to the very short time duration (about a picosecond) of the laser pulse. This accelerated micro-foil is used to ignite a pre-compressed cylindrical shell containing the deuterium tritium fuel. The fast ignition is induced by a heat wave produced during the collision of the accelerated foil with the pre-compressed target. This approach has the advantage of separating geometrically the nanoseconds lasers that compress the target with the picosecond laser that accelerates the foil.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-Ter-Vehn, J.M. (2004). The Physics of Inertial Fusion. Oxford: Clarendon Press.CrossRefGoogle Scholar
Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mima, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norreys, P.A., Setsuhara, Y., Tagagi, M., Yamanaka, M. & Yamanaka, C. (1991). High density compression experiments at ILE. Laser Part. Beams 9, 193207.CrossRefGoogle Scholar
Azechi, H., Sakaiya, T., Watari, T., Karasik, M., Saito, H., Ohtani, K., Hosoda, H., Shiraga, H., Nakai, M., Shigemori, K., Fujiok, A.S., Murakami, M., Johzaki, T., Gardner, J., Colombant, D.G., Bares, J.W., Velikovich, A.L., Aglitskiy, Y., Weaver, J., Obenchain, S., Eliezer, S., Kodama, R., Norimatsu, T., Fujita, H., Mima, K. & Kan, H. (2009). Experimental evidence of impact ignition:100-fold increase of neutron yield by impact or collision. Phys. Rev. Lett. 102, 235002/14.CrossRefGoogle ScholarPubMed
Basko, M.M., Churazov, M.D. & Aksenov, A.G. (2002). Prospects of heavy ion fusion in cylindrical geometry. Laser Part. Beams 20, 411414.CrossRefGoogle Scholar
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001/14.CrossRefGoogle ScholarPubMed
Basov, N.G., Guskov, S.Y. & Feoktistov, L.P. (1992). Thermo-nuclear gain of ICF targets with direct heating of the ignitor. J. Soviet Laser Res. 13, 396399.CrossRefGoogle Scholar
Brenner, C.M., Green, J.S., Robinson, A.P.L., Carroll, D.C., Dromey, B., Foster, P.S., Kar, S., Li, Y.T., Markey, K., Spindloe, C., Streeter, M.J.V., Tolley, M., Wahlstrom, C-G., Xu, M.H., Zepf, M., Mckenna, P. & Neely, D. (2011). Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets. Laser Part. Beams 29, 345351.CrossRefGoogle Scholar
Caruso, A. & Strangio, C. (2001). Studies on non-conventional high gain target design for ICF. Laser Part. Beams 19, 295308.CrossRefGoogle Scholar
Eliezer, S. & Ricci, R.A. (1991). High-Pressure Equations of State: Theory and Applications, Enrico Fermi International School of Physics, 1989. Amsterdam: North-Holland Pub.Google Scholar
Eliezer, S. & Martinez Val, J.M. (1998). Proton-boron11 fusion reactions induced by heat detonation burning waves. Laser Part. Beams 16, 581598.CrossRefGoogle Scholar
Eliezer, S. (2002). The Interaction of High Power Lasers with Plasmas. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
Eliezer, S., Ghatak, K. & Hora, H. (2002). Fundamentals of Equation of State. Singapore: World Scientific.CrossRefGoogle Scholar
Eliezer, S., Murakami, M. & Martinez Val, J.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 18.CrossRefGoogle Scholar
Eliezer, S. & Martinez Val, J.M. (2011). The comeback of shock waves in inertial fusion energy. Laser Part. Beams 29, 175181.CrossRefGoogle Scholar
Guskov, S.Y. (2001). Direct ignition of inertial fusion targets by a laser-plasma ion stream. Quan. Electr. 31, 885890.CrossRefGoogle Scholar
Guskov, S.Y. (2005). Thermonuclear gain and parameters of fast ignition ICF-targets. Laser Part. Beams 23, 255260.CrossRefGoogle Scholar
Hora, H., Badziak, J., Glowaks, S., Jablonski, S., Skladanovski, Z., Osman, F., Cang, Y., Zhang, J., Miley, G.H., Peng, H.S., He, X.T., Zhang, W.Y., Rohlena, K., Ullschmied, J. & Jungwirth, K. (2005). Fusion energy from plasma block ignition. Laser Part. Beams 23, 423432.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Flippo, K., Lalousis, P., Castillo, R., Yang, X., Malekynia, B. & Ghoranneviss, M. (2011). Review about acceleration of plasma by nonlinear forces from picoseond laser pulses and block generated fusion flame in uncompressed fuel. Laser Part. Beams 29, 353363.CrossRefGoogle Scholar
Jackel, S., Salzmann, D., Krumbein, A. & Eliezer, S. (1983). Multi-shock compression of solid planar targets using tailored laser pulses. Phys. Plasmas 26, 31383147.Google Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T., & Zepf, M. (2001). Fast ignition of ultra-high plasma as a step towards laser fusion ignition. Nat. 412, 798802.CrossRefGoogle Scholar
Krasa, J., Lorruso, A., Nassisi, V., Velardi, L. & Velyhan, A. (2011). Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation. Laser Part. Beams 29, 113119.CrossRefGoogle Scholar
Lindl, J.D. (1997). Inertial Confinement Fusion: The Quest for Ignition and High Gain Using Indirect Drive. New York: Springer.Google Scholar
Martinez Val, J.M. & Piera, M. (1997). Fusion burning waves ignited by cumulation jets. Fusion Tech. 32, 131151.CrossRefGoogle Scholar
Mima, K., Murakami, M., Nakai, S. & Eliezer, S. (2009). Applications of Laser-Plasma Interactions. Boca Raton: CRC Press.Google Scholar
Moses, E.I. (2009). Ignition on the national ignition facility: A path towards inertial fusion energy. Nucl. Fusion 49, 104022/19.CrossRefGoogle Scholar
Murakami, M., Nagatomo, H., Azechi, H., Ogando, F., Perlado, M. & Eliezer, S. (2006). Innovative ignition scheme for ICF impact fast ignition. Nucl. Fusion 46, 99103.CrossRefGoogle Scholar
Nakamura, H., Sentoku, Y., Matsuoka, T., Kondo, K., Nakatsutsumi, M., Norimatsu, T., Shiraga, H., Tanaka, K.A., Yabuuchi, T. & Kodama, R. (2008). Phys. Rev. Lett. 100, 165001/13.Google Scholar
Norreys, P.A., Allot, R., Clarke, R.J., Colliers, J., Neely, D., Rose, S.J., Zepf, M., Santala, M., Bell, A.R., Krushelnick, K., Dangor, A.E., Woolsey, N.C., Evans, R.G., Habara, H., Norimatsu, T. & Kodama, R. (2000). Experimental studies of the advanced fast ignitor scheme. Phys. Plasmas 7, 37213726.CrossRefGoogle Scholar
Pae, K.H., Choi, I.W. & Lee, J. (2011). Effect of target composition on proton acceleration by intense laser pulses in the radiation pressure acceleration regime. Laser Part. Beams 29, 1116.CrossRefGoogle Scholar
Piriz, A.R., Lopez Cela, J.J., Cortazar, O.D., Tahir, N.A. & Hoffmann, D.H.H. (2005). Rayleigh-Taylor instability in elastic solids. Phys. Rev. E 72 056313/110.CrossRefGoogle ScholarPubMed
Rosen, M.D. (1999). The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial. Phys. Plasma 5, 16901699.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra-powerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Torrisi, L., Caridi, F. & Giuffrida, L. (2011). Protons and ion acceleration from thick targets at 1010 W/cm2 laser pulse intensity. Laser Part. Beams 29, 2938.CrossRefGoogle Scholar
Vauzour, B., Perez, F., Volpe, L., Lancaster, K., Nicolai, P., Batani, D., Baton, S.D., Beg, F.N., Benedetti, C., Brambrink, E., Chawla, S., Dorchies, F., Fourment, C., Galimberti, M., Gizzi, L.A., Heathcote, R., Higginson, D.P., Hulin, S., Jafer, R., Koster, P., Labate, L., Mackinnon, A.J., Macphee, A.G., Nazarov, W., Pasley, J., Regan, C., Ribeyre, X., Richetta, M., Schurtz, G., Sgattoni, A. & Santos, J.J. (2011). Phys. Plasma 18, 043108/19.CrossRefGoogle Scholar
Velarde, G. & Carpintero-Santamaria, N. (2007). Inertial Confinement Nuclear Fusion: A Historical Approach by its Pioneers. London: Foxwell and Davies Pub.Google Scholar
Velarde, P., Ogando, F., Eliezer, S., Martinez Val, J.M., Perlado, J.M. & Murakami, M. (2005). Comparison between jet collision and shell impact concepts for fast ignition. Laser Part. Beams 23, 4346.CrossRefGoogle Scholar
Zeldovich, Ya.B. & Raizer, Yu.P. (1966). Physics of Shock Waves and High Temperature Hydrodynamics Phenomena, Hayes, W.D. & Probstein, R.F.New York: Academic Press.Google Scholar