Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T16:30:34.025Z Has data issue: false hasContentIssue false

Recent results from the Nova program at LLNL

Published online by Cambridge University Press:  09 March 2009

E. M. Campbell
Affiliation:
Lawrence Livermore National Laboratories, L-481, Livermore, CA 94550

Abstract

Recent improvements to the Nova laser and target experiments addressing laser–plasma interaction physics, hydrodynamic stability, implosion physics, and X-ray laser physics are summarized. Highlights include demonstrated laser performance exceeding Nova's original design goals, the observation of improved target compressions with temporally shaped laser pulses, and demonstrated lasing at wavelengths shorter than 45 Å.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bibeau, C. et al. 1990 IEEE J. Quantum Electron, (submitted).Google Scholar
Bodner, S. E. 1974 Phys. Rev. Lett. 33, 761.CrossRefGoogle Scholar
Campbell, E. M. 1986 Rev. Sci. Instrum. 57, 2101.Google Scholar
Cole, A. J. et al. 1982 Nature 299, 329.CrossRefGoogle Scholar
Drake, R. P. et al. 1990 Lasers Part. Beams (to be published).Google Scholar
Grun, J. et al. 1984 Phys. Rev. Lett. 53, 1352.Google Scholar
Henesian, M. A. et al. 1990 J. Opt. Soc. Am. B (submitted).Google Scholar
Kania, D. et al. 1990 Phys. Rev. Lett. (submitted).Google Scholar
Kilkenny, J. D. 1990 Phys. Fluids B, 2, 1400.CrossRefGoogle Scholar
Kruer, W. L. 1985 Comments Plasma Phys. Controlled Fusion 9 (No. 2).Google Scholar
Kruer, W. L. 1987 The Physics of Laser Plasma Interactions (Addison-Wesley, Reading, MA).Google Scholar
Lawson, J. et al. 1990 J. Appl. Phys.Google Scholar
Lelevier, R., Lasher, G. & Bjorklund, F. 1955 University of California Report No. UCRL-4459.Google Scholar
London, R. A. et al. 1989 Appl. Opt. 28, 3397.CrossRefGoogle Scholar
Lowdermilk, W. H. 1991 Laser Part. Beams 9, 297307.CrossRefGoogle Scholar
Macgowan, B. J. et al. 1990 Phys. Rev. Lett. Vol. 65, pg. 420.CrossRefGoogle Scholar
Maine, P. et al. 1988 IEEE J. Quantum Electron. 24 398.Google Scholar
Matthews, D. L. et al. 1985 Phys. Rev. Lett. 54, 110.Google Scholar
Maxon, S. et al. 1985 J. Appl. Phys. 57, xxx.Google Scholar
Nuckolls, J. H. 1982 Phys. Today 35 (No. 9), 24.Google Scholar
Nuckolls, J. H. et al. 1972 Nature 239, 139.Google Scholar
Obenschain, S. et al. 1986 Phys. Rev. Lett. 56, 2807.CrossRefGoogle Scholar
Perry, M. D. et al. 1990 Appl. Opt. Lett. (submitted).Google Scholar
Skupsky, S. et al. 1989 J. Appl. Phys. 66, 3456.CrossRefGoogle Scholar
Suckewar, S. et al. 1985 Phys. Rev. Lett. 55, 1753.Google Scholar
Takabe, H., Montierth, L. & Morse, R. L. 1983 Phys. Fluids 26, 2299.CrossRefGoogle Scholar
Trainor, R. J. et al. 1983 Appl. Phys. Lett. 43, 542.CrossRefGoogle Scholar
Young, P. 1988 Comments Plasma Phys. Controlled Fusion 12, 53.Google Scholar
Young, P. et al. 1988 Phys. Rev. Lett. 61, 2336.Google Scholar