Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T09:20:30.579Z Has data issue: false hasContentIssue false

Proton probing measurement of electric and magnetic fields generated by ns and ps laser-matter interactions

Published online by Cambridge University Press:  06 May 2008

L. Romagnani*
Affiliation:
School of Mathematics and Physics, The Queen's University of Belfast, Belfast, UK
M. Borghesi
Affiliation:
School of Mathematics and Physics, The Queen's University of Belfast, Belfast, UK
C.A. Cecchetti
Affiliation:
School of Mathematics and Physics, The Queen's University of Belfast, Belfast, UK
S. Kar
Affiliation:
School of Mathematics and Physics, The Queen's University of Belfast, Belfast, UK
P. Antici
Affiliation:
Laboratoire pour l'Utilisation des Lasers Intenses (LULI), UMR 7605 CNRS-CEA-Ecole Polytechnique-University, Palaiseau, France Dipartimento di Energetica, Università di Roma, La Sapienza, Roma, Italy
P. Audebert
Affiliation:
Laboratoire pour l'Utilisation des Lasers Intenses (LULI), UMR 7605 CNRS-CEA-Ecole Polytechnique-University, Palaiseau, France
S. Bandhoupadjay
Affiliation:
Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, UK
F. Ceccherini
Affiliation:
Dipartimento di Fisica “E. Fermi,”Università di Pisa, Pisa, Italy
T. Cowan
Affiliation:
Physics Department, MS-220, University of Nevada, Reno, Nevada
J. Fuchs
Affiliation:
Laboratoire pour l'Utilisation des Lasers Intenses (LULI), UMR 7605 CNRS-CEA-Ecole Polytechnique-University, Palaiseau, France
M. Galimberti
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Italy
L.A. Gizzi
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Italy
T. Grismayer
Affiliation:
Centre de Physique Theorique, UMR 7644, CNRS-Ecole Polytechnique, Palaiseau, France
R. Heathcote
Affiliation:
Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, UK
R. Jung
Affiliation:
Institut für Laser und Plasma Physik, Heinrich-Heine-Universität Düsseldorf, Germany
T.V. Liseykina
Affiliation:
Dipartimento di Fisica “E. Fermi,”Università di Pisa, Pisa, Italy
A. Macchi
Affiliation:
Dipartimento di Fisica “E. Fermi,”Università di Pisa, Pisa, Italy PolyLAB, CNR-INFM, Pisa, Italy
P. Mora
Affiliation:
Centre de Physique Theorique, UMR 7644, CNRS-Ecole Polytechnique, Palaiseau, France
D. Neely
Affiliation:
Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, UK
M. Notley
Affiliation:
Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, UK
J. Osterholtz
Affiliation:
Institut für Laser und Plasma Physik, Heinrich-Heine-Universität Düsseldorf, Germany
C.A. Pipahl
Affiliation:
Institut für Laser und Plasma Physik, Heinrich-Heine-Universität Düsseldorf, Germany
G. Pretzler
Affiliation:
Institut für Laser und Plasma Physik, Heinrich-Heine-Universität Düsseldorf, Germany
A. Schiavi
Affiliation:
Dipartimento di Energetica, Università di Roma, La Sapienza, Roma, Italy
G. Schurtz
Affiliation:
Centre d'Etudes des Lasers Intenses et Applications, UMR 5107 Universtity of Bordeaux I-CNRS-CEA, France
T. Toncian
Affiliation:
Institut für Laser und Plasma Physik, Heinrich-Heine-Universität Düsseldorf, Germany
P.A. Wilson
Affiliation:
School of Mathematics and Physics, The Queen's University of Belfast, Belfast, UK
O. Willi
Affiliation:
Institut für Laser und Plasma Physik, Heinrich-Heine-Universität Düsseldorf, Germany
*
Address correspondence and reprint request to: L. Romagnani, School of Mathematics and Physics, The Queen's University of Belfast, Belfast BT7 1NN, UK. E-mail: l.romagnani@qub.ac.uk

Abstract

The use of laser-accelerated protons as a particle probe for the detection of electric fields in plasmas has led in recent years to a wealth of novel information regarding the ultrafast plasma dynamics following high intensity laser-matter interactions. The high spatial quality and short duration of these beams have been essential to this purpose. We will discuss some of the most recent results obtained with this diagnostic at the Rutherford Appleton Laboratory (UK) and at LULI - Ecole Polytechnique (France), also applied to conditions of interest to conventional Inertial Confinement Fusion. In particular, the technique has been used to measure electric fields responsible for proton acceleration from solid targets irradiated with ps pulses, magnetic fields formed by ns pulse irradiation of solid targets, and electric fields associated with the ponderomotive channelling of ps laser pulses in under-dense plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M., Patel, P.K., Mackinnon, A., Price, D., Wilks, S. & Morse, E. (2004). Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils. Phys. Rev. Lett. 93, 265004.CrossRefGoogle ScholarPubMed
Betti, S., Ceccherini, F., Cornolti, F. & Pegoraro, F. (2005). Expansion of a finite-size plasma in vacuum. Plasma Phys. Contr. Fusion 47, 521529.CrossRefGoogle Scholar
Borghesi, M., Mackinnon, A.J., Barringer, L., Gaillard, R., Gizzi, L.A., Meyer, C., Willi, O., Pukhov, A. & Meyer-Ter-Vehn, J. (1997). Relativistic channeling of a picosecond laser pulse in a near-critical preformed plasma. Phys. Rev. Lett. 78, 879882.CrossRefGoogle Scholar
Borghesi, M., Mackinnon, A.J., Bell, A.R., Gaillard, R. & Willi, O. (1998). Megagauss magnetic field generation and plasma jet formation on solid targets irradiated by an ultraintense picosecond laser pulse. Phys. Rev. Lett. 81, 112115.CrossRefGoogle Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Mackinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.CrossRefGoogle Scholar
Borghesi, M., Mackinnon, A.J., Campbell, D.H., Hicks, D.G., Kar, S., Patel, P.K., Price, D., Romagnani, L., Schiavi, A. & Willi, O. (2004). Multi-MeV Proton Source Investigations In Ultraintense Laser-Foil Interactions. Phys. Rev. Lett. 92, 055003.CrossRefGoogle ScholarPubMed
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., Mackinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.CrossRefGoogle Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Borisov, A.B., Borovskiy, A.V., Korobkin, V.V., Prokhorov, A.M., Shiryaev, O.B., Shi, X.M., Luk, T.S., Mcpherson, A., Solem, J.C., Boyer, K. & Rhodes, C.K. (1992). Observation Of Relativistic And Charge-Displacement Self-Channelling Of Intense Subpicosecond Ultraviolet (248 Nm) Radiation In Plasmas. Phys. Rev. Lett. 68, 23092312.CrossRefGoogle ScholarPubMed
Clark, E.L., Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interaction with solids. Phys Rev. Lett. 84, 670673.CrossRefGoogle ScholarPubMed
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernandez, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pepin, H. & Renard-Le Galloudec, N. (2004). Ultralow emittance, multi-mev proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.CrossRefGoogle ScholarPubMed
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Fritzler, S., Najmudin, Z., Malka, V., Krushelnick, K., Marle, C., Walton, B., Wei, M.S., Clarke, R.J. & Dangor, A.E. (2002). Ion heating and thermonuclear neutron production from high-intensity subpicosecond laser pulses interacting with underdense plasmas. Phys. Rev. Lett. 89, 165004.CrossRefGoogle ScholarPubMed
Fuchs, J., Sentoku, Y., Karsch, S., Cobble, J., Audebert, P., Kemp, A., Nikroo, A., Antici, P., Brambrink, E., Blazevic, A., Campbell, E.M., Fernandez, J.C., Gauthier, J.-C., Geissel, M., Hegelich, M., Pepin, H., Popescu, H., Renard-Legalloudec, N., Roth, M., Schreiber, J., Stephens, R. & Cowan, T.E. (2005). Comparison of laser ion acceleration from the front and rear surfaces of thin foils. Phys. Rev. Lett. 94, 045004.CrossRefGoogle ScholarPubMed
Gitomer, S.J., Jones, R.D., Begay, F., Ehler, A.W., Kephart, J.F. & Kristal, R. (1986). Fast ions and hot electrons in the laser-plasma interaction. Phys. Fluids 29, 26792688.CrossRefGoogle Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Krushelnick, K., Ting, A.Moore, C.I., Burris, H.R., Esarey, E., Sprangle, P. & Baine, M. (1997). Plasma channel formation and guiding during high intensity short pulse laser plasma experiments. Phys. Rev. Lett. 78, 40474050.CrossRefGoogle Scholar
Krushelnick, K., Clark, E.L., Najmudin, Z., Salvati, M., Santala, M.I.K., Tatarakis, M., Dangor, A.E., Malka, V., Neely, D., Allot, R. & Danson, C. (1999). Multi-Mev ion production from high-intensity laser interactions with underdense plasmas. Phys. Rev. Lett. 83, 737740.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Particle Beams 24, 255259.CrossRefGoogle Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, L.J. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339491.CrossRefGoogle Scholar
Macchi, A., Ceccherini, F., Cornolti, F., Kar, S. & Borghesi, M. (2007). Ponderomotive laser ion acceleration and electric field dynamics following charge-displacement channeling. http://arxiv.org/abs/physics/0701139.Google Scholar
Mackinnon, A.J., Patel, P.K., Town, R.P., Edwards, M.J., Phillips, T., Lerner, S.C., Price, D.W., Hicks, D., Key, M.H., Hatchett, S., Wilks, S.C., Borghesi, M., Romagnani, L., Kar, S., Toncian, T., Pretzler, G., Willi, O., Koenig, M., Martinolli, E., Lepape, S., Benuzzi-Mounaix, A.Audebert, P., Gauthier, J.C., King, J., Snavely, R., Freeman, R.R. & Boehlly, T. (2004). Proton radiography as an electromagnetic field and density perturbation diagnostic (Invited). Rev. Sci. Instrum. 75, 35313536.CrossRefGoogle Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, Vy. (2000). Forward ion acceleration in thin films driven by a high intensity laser. Phys. Rev. Lett. 84, 41084111.CrossRefGoogle ScholarPubMed
Malka, V., Faure, J., Glinec, Y. & Lifschitz, A.F. (2005). Laser-plasma accelerators: a new tool for science and for society. Plasma Phys. Contr. Fusion 47, B481B490.CrossRefGoogle Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Mora, P. (2005). Thin-foil expansion into a vacuum. Phys. Rev. E 72, 056401.CrossRefGoogle ScholarPubMed
Mori, W.B., Joshi, C., Dawson, J.M., Forslund, D.W. & Kindel, J.M. (1998). Evolution of self-focusing of intense electromagnetic waves in plasma. Phys. Rev. Lett. 60, 12981301.CrossRefGoogle Scholar
Morou, G.A., Tajima, T.Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Nicolai, P., Vandenboomgaerde, M., Canaud, B. & Chaigneau, F. (2000). Effects of self-generated magnetic fields and nonlocal electron transport in laser produced plasmas. Phys. Plasmas 7, 42504258.CrossRefGoogle Scholar
Passoni, M. & Lontano, M. (2004). One-dimensional model of the electrostatic ion acceleration in the ultraintense laser-solid interaction. Laser Part. Beams 22, 163169.CrossRefGoogle Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.CrossRefGoogle ScholarPubMed
Romagnani, L., Fuchs, J., Borghesi, M., Antici, P., Audebert, P., Ceccherini, F., Cowan, T., Grismayer, T., Kar, S., Macchi, A., Mora, P., Pretzler, G., Schiavi, A., Toncian, T. & Willi, O. (2005). Dynamics of electric fields driving the laser acceleration of multi-MeV protons. Phys. Rev. Lett. 95, 195001.CrossRefGoogle ScholarPubMed
Romagnani, L. (2005). Laser-Plasma Investigations Employing Laser-Driven Proton Probes. PhD Thesis, The Queen's University of Belfast, Belfast, UK.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Rousse, A., Ta Phuoc, K.T., Shah, R., Pukhov, A., Lefebvre, E., Malka, V., Kiselev, S., Burgy, F., Rousseau, J.-P., Umstader, D. & Hulin, D. (2004). Production of a keV X-Ray beam from synchroton radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005.CrossRefGoogle Scholar
Santala, M.I.K., Zepf, M., Beg, F.N., Clark, E.L., Dangor, A.E., Krushelnick, K., Tatarakis, M., Watts, I., Ledingham, K.W.D., Mccanny, T., Spencer, I., Machacek, A.C., Allot, R., Clarke, R.J. & Norreys, P.A. (2001). Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions. Appl. Phys. Lett. 78, 1921.CrossRefGoogle Scholar
Schiavi, A.M. (2003). Study of Laser-Produced Plasmas by X-ray and Proton Radiography. PhD Thesis, Imperial College of Science, London, UK.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle ScholarPubMed
Stamper, J.A. (1991). Review on spontaneous magnetic fields in laser-produced plasmas: Phenomena and measurements. Laser Part. Beams 9, 841862.CrossRefGoogle Scholar
Tatarakis, M., Watts, I., Beg, F.N., Clark, E.L., Dangor, A.E., Gopal, A., Haines, M.G., Norreys, P.A., Wagner, U., Wei, M.-S., Zepf, M. & Krushelnick, K. (2002). Measuring huge magnetic fields. Nature 415, 280.CrossRefGoogle ScholarPubMed
Willi, O., Rumsby, P.T. & Duncan, C. (1981). Megagauss magnetic fields on laser irradiated spherical targets, Opt. Commun. 37, 4044.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar