Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T14:07:59.123Z Has data issue: false hasContentIssue false

Polari interferometer with automatic images processing for laser plasma diagnostic

Published online by Cambridge University Press:  09 March 2009

T. Pisarczyk
Affiliation:
Institute of Optoelectronics Military University of Technology, 00–908 Warsaw 49, Poland
R. Arendzikowski
Affiliation:
Institute of Optoelectronics Military University of Technology, 00–908 Warsaw 49, Poland
Z. Patron
Affiliation:
Institute of Optoelectronics Military University of Technology, 00–908 Warsaw 49, Poland
P. Parys
Affiliation:
Institute of Plasma Physics and Laser Microfusion, 00–908 Warsaw 49, Poland

Abstract

Automated three-channel polari-interferometer measurements of electron density distributions and magnetic fields in a laser plasma are presented. Each of the polari-interferometer channels, interferometric, Faraday, and “tenebral” (shadow), has been equipped with a CCD camera with the matrix (512 × 512). With special software for each of the channels, not only the distribution of the electron density on the basis of interferograms is obtained, but also the distributions of magnetic fields in plasma using the information from the Faraday and shadow images. The results of testing investigations obtained in the plasma experiment are the main part of this work.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basov, N.G. et al. 1987 Pis'ma Zh. Exp. Teor. Fiz. 45(4), 173.Google Scholar
Braithwaite, G. et al. 1989 Sci. Instrumm. 60, 2825.CrossRefGoogle Scholar
Branickij, A.B. et al. 1992 Fizika Plazmy (in Russian) 18(2), 245.Google Scholar
Bunkin, F.V. et al. 1983 Kvantovaya Elektron. 10(11), 2149.Google Scholar
Burgess, M.D. et al. 1985 Phys. Fluids. 28(7), 2286.CrossRefGoogle Scholar
Czekaj, S. et al. 1989 Plasma Phys. Control. Fusion 31(4), 587.CrossRefGoogle Scholar
Kalal, M. et al. 1988 J. Appl. Phys. 64(8), 3845.CrossRefGoogle Scholar
Patron, Z. et al. 1990 Instrum. Exp. Tech. 33(1), 194 (English trans.).Google Scholar
Pisarczyk, T. et al. 1990 J. Soviet Laser Res. 11(1), 1.CrossRefGoogle Scholar
Raven, A. et al. 1978 Phys. Rev. Lett. 41(8), 554.CrossRefGoogle Scholar
Raven, A. et al. 1979 Appl. Phys. Lett. 35(7), 526.CrossRefGoogle Scholar
Soltwisch, H. 1983 Nucl. Fusion 23, 1681.CrossRefGoogle Scholar
Soltwisch, H. 1986 Rev. Sci. Instrumm. 57, 1939.CrossRefGoogle Scholar
Soltwisch, H. 1988 Rev. Sci. Instrumm. 59, 1599.CrossRefGoogle Scholar
Stamper, J.A. 1975 Phys. Rev. Lett. 34(3), 138.CrossRefGoogle Scholar
Stamper, J.A. 1978 Phys. Rev. Lett. 40(18), 1177.CrossRefGoogle Scholar
Stamper, J.A. et al. 1991 Laser Particle Beams 9, 841.CrossRefGoogle Scholar
Veretennikov, V.A. et al. 1990 Fizika Plazmy (in Russian) 16(7), 818.Google Scholar
Willy, O. et al. 1981 Opt. Comm. 37(1), 40.CrossRefGoogle Scholar