Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T17:33:18.033Z Has data issue: false hasContentIssue false

Nonlinear force driven plasma blocks igniting solid density hydrogen boron: Laser fusion energy without radioactivity

Published online by Cambridge University Press:  17 August 2009

H. Hora*
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
G.H. Miley
Affiliation:
Department of Nuclear, Plasma and Radiation Engineering, University of Illinois, Urbana, Illinois
N. Azizi
Affiliation:
Plasma Physics Research Centre, Islamic Azad University, Tehran-Poonak, Iran
B. Malekynia
Affiliation:
Plasma Physics Research Centre, Islamic Azad University, Tehran-Poonak, Iran
M. Ghoranneviss
Affiliation:
Plasma Physics Research Centre, Islamic Azad University, Tehran-Poonak, Iran
X.T. He
Affiliation:
Institute of Applied Physics and Computational Mathematics, Bejing, China
*
Address correspondence and reprint requests to: H. Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail: h.hora@unsw.edu.au

Abstract

Energy production by laser driven fusion energy is highly matured by spherical compression and ignition of deuterium-tritium (DT) fuel. An alternative scheme is the fast ignition where petawatt (PW)-picosecond (ps) laser pulses are used. A significant anomaly was measured and theoretically analyzed with very clean PW-ps laser pulses for avoiding relativistic self focusing. This permits a come-back of the side-on ignition scheme of uncompressed solid DT, which is in essential contrast to the spherical compression scheme. The conditions of side-on ignition thresholds needed exorbitantly high energy flux densities E*. These conditions are now in reach by using PW-ps laser pulses to verify side-on ignition for DT. Generalizing this to side-on igniting solid state density proton-Boron-11 (HB11) arrives at the surprising result that this is one order of magnitude more difficult than the DT fusion. This is in contrast to the well known impossibility of igniting HB11 by spherical laser compression and may offer fusion energy production with exclusion of neutron generation and nuclear radiation effects with a minimum of heat pollution in power stations and application for long mission space propulsion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azizi, N., Hora, H., Miley, G.H., Malekynia, B., Ghoranneviss, M. & He, X.T. (2009). Threshold for laser driven block ignition for fusion energy from hydrogen-bron-11. Laser Part. Beams 27, 201205.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401410.Google Scholar
Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.Google Scholar
Batchelor, M.T. & Stening, R.J. (1985). Collisionless absroption of femtosecond laser pulses in plasmas by nonlinear forces. Laser Part. Beams 3, 189196.CrossRefGoogle Scholar
Bobin, J.L. (1974). Nuclear fusion reactions in fronts propagating in solid DT. In Laser Interaction and Related Plasma Phenomena (Schwarz, H. & Hora, H., Eds.), Vol. 4B, pp. 465494; New York: Plenum Press.CrossRefGoogle Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 412422.Google Scholar
Clark, R.G., Hora, H., Ray, P.S. & Titterton, E. (1978). Evaluation of cross sections of the Li(d,α)α reaction. Phys. Rev. C18, 11271132.Google Scholar
Eliezer, S., Murakami, M. & Martinez-Val, J.-M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585.Google Scholar
Földes, T.B. & Szatmari, S. (2008). On the use of KrF lasers for fast ignition. Laser Part. Beams 26, 575.Google Scholar
Ghoranneviss, M., Sari, A.H., Hantehzadeh, M.H., Hora, H., Osman, F., Doolan, K.R., Höpfl, R. & Benstetter, G. (2006). Subthreshold defect generation by intense electron beams in semioconductors and microelectronics. SPIE Proc. 6035, 377383.Google Scholar
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X. (2008). Inhibition factor reduces fast ignition threshold of laser fusion using nonlinear force driven block ignition. Laser Part. Beams 26, 105111.Google Scholar
Hora, H. (1974). Striated jets due to nonlinear ponderomotive forces in laser produced plasma at obliquely incident light. Phys. Fluids 17, 939947.Google Scholar
Hora, H. (1975). Laser Plasmas and Nuclear Energy. New York: Plenum Press.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Hora, H. (2002). Fusion reactor with petawatt laser. German Patent Disclosure (Offenlegungsschrift) DE 102 08 515 A1 (28 February 2002, declassified 5 SEP 2002).Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction II. Czechosl. J. Phys. 53, 199217.CrossRefGoogle Scholar
Hora, H. (2007). Klimakatastrophe Überwinden: Neuer Aufbruch zur Rettung der Umwelt (Overcome the Climatic Catastrophe: New Steps for Saving the Environment). Regensburg, Germany: S. Roderer Verlag.Google Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.Google Scholar
Hora, H., Badziak, J., Read, M.N., Li, Y.-T., Liang, T.-J., Liu, H., Sheng, Z.-M., Zhang, J., Osman, F., Miley, G.H., Zhang, W., He, X., Peng, H., Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven particle beams of very high intensity. Phys. Plasmas 14, 072701-1/072701-7.Google Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Krasa, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Opt. Commun. 207, 333338.CrossRefGoogle Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers in nonlinear force produced cavitons at laser-plasma interaction. Phys. Rev. Lett. 53, 16501652.CrossRefGoogle Scholar
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101/1–011101/3.Google Scholar
Hora, H., Osman, F., Cang, Y., Badziak, J., Jablosnki, S., Glowacz, S., Mileay, G.H., Hammerling, P., Wolowski, J., Jungwirteh, K., Rohlena, K., He, X., Peng, H. & Zhang, J. (2004). TW-ps laser driven blocks for light ion beam fusion in solid density DT, High-power Laser and Applications III. SPIE Proc. 5627, 5163.Google Scholar
Kaluza, M., Schreiber, J., Sandala, M.I.K., Tskiris, G.D., Eidmann, K., Meyer-Ter-Vehn, J. & Witte, K. (2004). Influence of the laser prepulse on proton acceleration in thin foil experiments. Phys. Rev. Lett. 93, 045003.Google Scholar
Li, X.Z, Liu, B., Chen, S.I., Wei, Q.M. & Hora, H. (2004). Fusion cross sections in inertial fusion energy. Laser Part. Beams 22, 469477.Google Scholar
Malekynia, B., Hora, H., Ghoranneviss, M. & Miley, G.H. (2009). Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks. Laser Part. Beams 27, 207215.Google Scholar
Miley, G.H. (1976). Fusion Energy Conversion. Hinsdale, IL: American Nuclear Society.Google Scholar
Miley, G., Hora, H., Cang, Y., Osman, F., Badziak, J., Wolowski, J., Sheng, Z.-M., Zhang, J., Zhang, W.-Y. & He, X.-T. (2008). Block ignition inertial confinement fusion (ICF) for space propulsion. American Institute of Aeronautics and Astronautics. Paper AIAA 2008-4612, Proceedings of 44th AIAA Joint Propulsion Conference and Exhibit, Hartford, CT.Google Scholar
Moses, E. (2008). Ignition on the National Ignition Facility. J. Phys. Conf. Ser. 112, 012003/1–4.CrossRefGoogle Scholar
Moses, E., Miller, G.H. & Kauffman, R.L. (2006). The ICF status and plans in the United States. J. Phys. IV 133, 916.Google Scholar
Mourou, G. & Tajima, T. (2002). Ultraintense lasers and their applications. In Inertial Fusion Science and Applications 2001 (Tanaka, V.R., Meyerhofer, D.D. & Meyer-ter-Vehn, J., Eds.), pp. 831839, Paris: Elsevier.Google Scholar
Neely, D., Foster, P., Robinson, A., Lindau, F., Lundh, O., Persson, A., Wahlström, C.-G. & Mckenna, P. (2006). Enhanced proton beams from ultrathin targets driven by high contrast ratio laser pulses. Appl. Phys. Lett. 89, 021502.Google Scholar
Nuckolls, J.L. & Wood, L. (2002). Future of Inertial Fusion Energy. http://www.ntis.gov.Google Scholar
Oliphant, M. (1989). History of fusion energy. In DVD Interview with H. Hora. Canberra: Australian Academy of Science.Google Scholar
Perry, D.M. & Mourou, G. (1994). Terawatt to petawatt subpicosecond laser. Sci. 264, 917924.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, B., Blazevic, A., Clarke, R., Cobble, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas. Phys. Plasmas 3, 47124716.Google Scholar
Scheffel, C., Stening, R.J., Hora, H., Höpfl, R., Martinez-Val, J.-M., Eliezer, S., Kasotakis, G., Piera, M. & Sarris, E. (1997). Analysis of the retrograde hydrogen boron fusion gains at inertial confinement fusion with volume ignition. Laser Part. Beams 15, 565574.CrossRefGoogle Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 55, 447.Google Scholar
Szatmari, S. & Schäfer, F.P. (1988). Simplified laser system for the generation of 60 fs pulses at 248 nm. Opt. Commun. 68, 196201.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D & Mason, R.J. (1994). Ignition of high-gain with ultrapowerfull lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Weaver, T., Zimmerman, G. & Wood, L. (1973) Exotic CTR fuel: Non-thermal effects and laser fusion application. Report UCRL-74938. Livermore, CA: Lawrence Livermore Laboratory.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Landgon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.Google Scholar
Yazdani, E., Cang, Y., Sadighi-Bonabi, R., Hora, H. & Osman, F. (2009). Layers from initial Rayleigh density profiles by directed nonlinear force driven plasma blocks for alternative fast ignition. Laser Part. Beams 27, 149156.Google Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, L., Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E57, 37463752.Google Scholar