Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-25T12:22:50.772Z Has data issue: false hasContentIssue false

Generation and confinement of high energy electrons generated by irradiation of ultra-intense short laser pulses onto cone targets

Published online by Cambridge University Press:  06 May 2008

T. Nakamura*
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Japan
K. Mima
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Japan
H. Sakagami
Affiliation:
Theory and Computer Simulation Center, National Institute for Fusion Science, Toki, Japan
T. Johzaki
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Japan
H. Nagatomo
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Japan
*
Address correspondence and reprint requests to: Tatsufumi Nakamura, Institute of Laser Engineering, Osaka University, Suita 565-0871, Japan. E-mail: nakamura@ile.osaka-u.ac.jp

Abstract

Interactions of cone targets with different shapes with laser pulses are studied numerically. Two important parameters which characterize the laser-cone interaction in 2006 are introduced, which are cone angle and ratio of laser spot and cone tip. By changing these two parameters, energy coupling from laser to electrons is controlled. Some fraction of high energy electrons generated at side wall and cone tip are not freely propagating out from the target, but confined around the cone tip due to the disturbed electric field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Campbell, R.B., Kodama, R., Melhorn, T.A., Tanaka, K.A.Welch, D.R. (2005). Simulation of heating-compressed fast-ignition cores by petawatt laser-generated electrons. Phys. Rev. Lett 94, 055001.CrossRefGoogle ScholarPubMed
Chen, Z.L., Kodama, R., Nakatsutsumi, M., Nakamura, H., Tampo, M., Tanaka, K.A., Toyama, Y., Tsutsumi, T. & Yabuuchi, T. (2005). Enhancement of energetic electrons and photons by cone guiding of laser light. Phys. Rev. E 71, 036403036407.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Fuchs, J., Sentoku, Y., Karsch, S., Cobble, J., Audebert, P., Kemp, A., Nikroo, A., Antici, P., Brambrink, E., Blazevic, A., Campbell, E.M., Fernandez, J.C., Gauthier, J.C., Geissel, M., Hegelich, M., Pepen, H., Poescu, H., Renard-Legalloudec, N., Roth, M., Schreiber, J., Stephens, R. & Cowan, T.E. (2005). Comparison of laser ion acceleration from the front and rear surfaces of thin foils. Phys. Rev. Lett. 94, 045004.CrossRefGoogle ScholarPubMed
Hartemann, F.V., Tremaine, A.M., Anderson, S.G., Barty, C.P.J., Betts, S.M., Booth, R., Brown, W.J., Crane, J.K., Cross, R.R., Gibson, D.J., Fittinghoff, D.N., Kuba, J., Le Sage, G.P., Slaughter, D.R., Wootton, A.J., Hartouni, E.P., Springer, P.T., Rosenzweig, J.B. & Kerman, A.K. (2004). Characterization of a bright, tunable, ultrafast Compton scattering X-ray source. Laser Part. Beams 22, 221244.CrossRefGoogle Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillipps, T.W., Roth, M., Sangste, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.CrossRefGoogle Scholar
Johzaki, T., Sakagami, H., Nagatomo, H. & Mima, K. (2007). Holistic simulation for FIREX project with FI3. Laser Part. Beams 25, 621629.CrossRefGoogle Scholar
Johzaki, T., Nagatomo, H., Sakagami, H., Nakamura, T., Mima, K., Nakao, Y. & Yokota, T. (2006). Core heating analysis of fast ignition targets by integrated simulations. J. Phys. IV France 133, 385CrossRefGoogle Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beam 25, 371377.CrossRefGoogle Scholar
Katsouleas, T. (2004). Electrons hang ten on laser wake. Nature 431, 515516.CrossRefGoogle ScholarPubMed
Kodama, R., Sentoku, Y., Chen, Z.L., Kumar, G.R., Hatchett, S.P., Toyama, Y., Cowan, T.E., Freeman, R.R., Fuchs, J., Izawa, Y., Key, M.H., Kitagawa, Y., Kondo, K., Matsuoka, T., Nakamura, H., Nakatsutsumi, M., Norreys, P.A., Norimatsu, T., Snavely, R.A., Stephens, R.B., Tampo, M., Tanaka, K.A. & Yabuuchi, T. (2004). Plasma devices to guide and collimate a high density of MeV electrons. Nature 432, 10051008.CrossRefGoogle ScholarPubMed
Kodama, R., Shiraga, H., Shigemori, K., Toyama, Y., Fujioka, H., Azechi, H., Fujita, H., Habara, H., Hall, T., Izawa, Y., Jitsuno, T., Kitagawa, Y., Krushelnick, K.M., Lancaster, K.L., Mima, K., Nagai, K., Nishimura, H., Norimatsu, T., Norreys, P.A., Sakabe, S., Tanaka, K.A., Youssef, A., Zepf, M. & Yamanaka, T. (2002). Fast heating scalable to laser fusion ignition. Nature 418, 933934.CrossRefGoogle ScholarPubMed
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H., Mima, K & Koga, J. (2007). High energy electron generation by laser-cone interaction. J. Plasma Fusion Res 2, 0018.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Ruhl, H. & Cairns, R.A. (1997). Reduced fractional absorption and second harmonic emission in laser-produced plasmas. Phys. Plasmas 4, 2246.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beams 24, 191198.CrossRefGoogle Scholar
Sentoku, Y., Ruhl, H., Mima, K., Kodama, R., Tanaka, K.A. & Kishimoto, Y. (1999). Plasma jet formation and magnetic field generation in the intense laser plasma under oblique incidence. Phys. Plasmas 6, 28552861.CrossRefGoogle Scholar
Stephens, R.B., Snavely, R.A., Aglintskiy, Y., Amiranoff, F., Andersen, C., Batani, D., Baton, S.D., Cowan, T., Freeman, R.R., Hall, T., Hachett, S.P., Hill, J.M., Key, M.H., King, J.A., Koch, J.A., Koenig, M., Mackinnon, A.J., Lancaster, K.L., Martinolli, E., Norreys, P., Perelli-Cippo, E., Rabec-Legloahec, M., Rousseaux, C., Santos, J.J. & Scianitti, F. (2004). Kα fluorescence measurement of relativistic electron transport in the context of fast ignition. Phys. Rev. E 69 066414066420.CrossRefGoogle ScholarPubMed
Strangio, C., Caruso, A., Neely, D., Andreoli, P.L., Anzalone, R., Clarke, R., Cristofari, G., Del Prete, E., Di Giorgio, G., Murphy, C., Ricci, C., Stevens, R. & Tolley, M. (2007). Production of multi-MeV per nucleon ions in the controlled amount of matter mode (CAM) by using causally isolated targets. Laser Part. Beams 25, 8591.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, J., Kruer, W.L., Wils, S.C., Woodworth, J., Campbell, M., Perry, M. & Mason, R.J. (1994). Ignition and gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett 69, 13831386.CrossRefGoogle ScholarPubMed
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar
Zvorykin, V.D., Didenko, D.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Y., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti: Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.CrossRefGoogle Scholar