Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T09:47:14.662Z Has data issue: false hasContentIssue false

Formation of the X-ray line emission spectrum of excimer laser-produced plasmas

Published online by Cambridge University Press:  16 October 2009

A. Magunov
Affiliation:
Multicharged Ions Spectra Data Center, Mendeleevo, 141570, Russia
A. Faenov
Affiliation:
Multicharged Ions Spectra Data Center, Mendeleevo, 141570, Russia
I. Skobelev
Affiliation:
Multicharged Ions Spectra Data Center, Mendeleevo, 141570, Russia
T. Pikuz
Affiliation:
Multicharged Ions Spectra Data Center, Mendeleevo, 141570, Russia
D. Batani
Affiliation:
Dipartimento di Fisica, Università di Milano, V.Celoria 16, Milano, Italy
M. Milani
Affiliation:
Dipartimento di Fisica, Università di Milano, V.Celoria 16, Milano, Italy
M. Costato
Affiliation:
Dipartimento di Fisica, Università di Modena, Italy
A. Pozzi
Affiliation:
Dipartimento di Fisica, Università di Modena, Italy
E. Turcu
Affiliation:
Rutherford Appleton Laboratory, Chilton, Oxon (U.K.)
R. Allot
Affiliation:
Rutherford Appleton Laboratory, Chilton, Oxon (U.K.)
M. Koenig
Affiliation:
LULI, Ecole Polytechnique, France
A. Benuzzi
Affiliation:
LULI, Ecole Polytechnique, France
F. Flora
Affiliation:
Dipartimento Innovazione, CRE ENEA, Frascati, Italy
A. Reale
Affiliation:
Dipartimento di Fisica, Università dell'Aquila, Italy

Abstract

Time- and space-integrated emission spectra measurements have been performed in plasma produced by 308 nm wavelength XeCl laser radiation (IL = (4–10)·1012 W/cm2, τ = 10 ns) and by 248 nm wavelength KrF laser pulse train radiation (IL = 5·1015 W/cm2, τ = 7 ps, 16 pulses in train) on CF2 plane target. Theoretical modelling of Lyman series and He-like ion resonance series of fluorine and its fit of experimental data show considerable differences in the absorption of laser radiation in the two plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batani, D. et al. 1991 Excimer Lasers and Applications III Letardi, Ed., SPIE vol. 1503.CrossRefGoogle Scholar
Bethe, H.A. & Salpeter, E. 1957 Quantum mechanics of one- and two-electron atoms (Berlin-Springer), p. 245.CrossRefGoogle Scholar
Boiko, V.A. et al. 1985 J. Sov. Laser Research 6, 85.Google Scholar
Bollanti, S. et al. 1995 Physica Scripta. 51, 326.CrossRefGoogle Scholar
Derzhiev, V.I. et al. 1985 General Phys. Inst. Preprint 56, Moscow (in Russian).Google Scholar
d'Etat, B. et al. 1987 J. Phys. B: At. Mol. Phys. 20, 1733.CrossRefGoogle Scholar
Fabre, E. et al. 1980 Plasma Phys. and Contr. Nucl. Fusion Research, vol. II-IAEA-CN-38/1–4, Vienna.Google Scholar
Faenov, A.Ya. et al. 1995 Phys. Rev. A 51, 3529.CrossRefGoogle Scholar
Faenov, A.Ya. et al. 1996 Kvantovaya electron (Quantum Electronics), 26, 701 (In Russian).Google Scholar
Griem, H.R. 1974 Spectral line broadening by plasmas (Academic, New York).Google Scholar
Inglis, D.R. & Teller, E. 1939 Astrophys. J. 90, 439.CrossRefGoogle Scholar
Mora, P. 1982 Phys. Fluids 25, 1051.CrossRefGoogle Scholar
Koenig, M. et al. 1992 Laser Particle Beams 10, 573.CrossRefGoogle Scholar
Kogan, V.I. 1958 Fizika plasmi i problema upravlyaemih yadernih reaktsiy Leontovich, M.A., ed. (Akademiya, Moscow), vol. 1, p. 99 (in Russian).Google Scholar
Rockett, P.D. et al. 1985 Appl. Opt. 24, 2536.CrossRefGoogle Scholar
Seely, J. 1981 Atom. Data and Nucl. Data Table 26, 137.CrossRefGoogle Scholar
Tighe, R.J. & Hooper, C.F. Jr. 1976 Phys. Rev. A 14, 1514.CrossRefGoogle Scholar
Turcu, E. et al. 1990 Excimer Lasers and Applications IIT. Letardi, , ed. SPIE vol. 1278, p. 32.CrossRefGoogle Scholar
Turcu, E. et al. 1994 Applications of Laser Plasma Radiation, SPIE vol. 2015, p. 243.CrossRefGoogle Scholar
Vinogradov, A.V. et al. 1977 Sov. Phys. JETP 45, 925.Google Scholar