Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T11:41:09.416Z Has data issue: false hasContentIssue false

Computer modelling of e-beam-pumped KrF lasers

Published online by Cambridge University Press:  09 March 2009

C. B. Edwards
Affiliation:
Laser Division, SERC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK.
F. O'Neill
Affiliation:
Laser Division, SERC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK.

Abstract

A computer kinetics model has been developed to predict the steady state behaviour of e-beam-pumped KrF lasers. The model can be used to calculate species densities, gain, loss and laser efficiency. Close agreement is obtained between the model predictions and a wide range of experimental measurements of optical gain, loss, and laser efficiency as a function of e-beam pump power, taken at various laboratories.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardsley, J. N. & Biondi, M. A. 1970 Adv. Atomic and Molecular Physics, 6.Google Scholar
Berger, M. J. & Seltzer, S. M. 1964 Tables of Energy Losses and Ranges of Electrons and Positrons, National Aeronautics and Space Administration Report No NASA SP-3012 (Unpublished).Google Scholar
Bohme, D. K., Adams, N. G., Moselman, M., Dunkin, D. B. & Ferguson, E. E. 1970 J. Chem. Phys. 52, 5094.CrossRefGoogle Scholar
Bradford, R. S., Lacina, W. B., Ault, E. R., Bhaumik, M. C. 1976 Electronic Transition Lasers II. Proc. of the Third Summer Colloquium on Electronic Transition Lasers, (ed. Wilson, L. E., Suchard, S. N. and Steinfeld, J. E.) Snowmass.Google Scholar
Brau, C. A. 1978 Excimer Lasers, Topics in Applied Physics, Vol. 30, Chapt. 4. (ed. Rhodes, C. K.) Springer-Verlag.Google Scholar
Christophorou, L. G. 1971 Atomic and Molecular Radiation Physics. Wiley-Interscience., P. 35.Google Scholar
Collier, F., Leblond, J. B., Hoffbeck, F. & Cottin, P. 1981 J. Chem. Phys 74, 4372.CrossRefGoogle Scholar
Edwards, C. B., O'Neill, F. & Shaw, M. J. 1980 Appl. Phys. Lett. 36, 617.CrossRefGoogle Scholar
Edwards, C. B., O'Neill, F. & Shaw, M. J. 1981 Appl. Phys. Lett. 38, 843.CrossRefGoogle Scholar
Eimerl, D. 1980 J. Appl. Phys. 51, 3008.CrossRefGoogle Scholar
Flannery, M. R. & Yang, T. P. 1978 Appl. Phys. Lett. 32, 327.CrossRefGoogle Scholar
Flannery, M. R. & Yang, T. P. 1978 Appl. Phys. Lett. 33, 574.CrossRefGoogle Scholar
Gibson, A. F. 1982 Contemp. Phys. 23, 285.CrossRefGoogle Scholar
Haas, R. A. & Morgan, W. L. 1979 Laser Program Annual Report Lawrence Livermore National Laboratory (UCRL-50021–79) Chapter 7.Google Scholar
Hall, R. J. 1978. J. Chem. Phys 68, 1803.CrossRefGoogle Scholar
Hawryluk, A. M., Mangano, J. A. & Jacob, J. H. 1977 Appl. Phys. Lett. 31, 164.CrossRefGoogle Scholar
Jacob, J. H., Rokni, M., Mangano, J. A. & Brochu, R. 1978 Appl. Phys. Lett. 32, 109.CrossRefGoogle Scholar
Jacob, J. H., Trainor, D. W., Rokni, M. & Hsia, J. C. 1980 Appl. Phys. Lett. 37, 522.CrossRefGoogle Scholar
Johnson, T. H. & Hunter, A. M. 1980 J. Appl. Phys. 51, 2406.CrossRefGoogle Scholar
Kannari, F., Obara, M. & Fujioka, T. 1982 J. Appl. Phys. 53, 135.CrossRefGoogle Scholar
Klimek, D. E., Hsia, J. C., Jacob, J. H., Trainor, D. W., Duzy, C. & Hyman, H. A. 1981 IEEE J. Quantum Electron. QE-17, 1847.CrossRefGoogle Scholar
Lacina, W. B. & Cohn, D. B. 1978 Appl. Phys. Lett. 32, 106.CrossRefGoogle Scholar
Lorents, D. C. 1976 Physica 82C, 19.Google Scholar
Lowenthal, D. D., Ewing, J. J., Center, R. E., Mumola, P. B., Grossman, W. M., Olson, N. T. & Shannon, J. P. 1981 IEEE J. Quantum Electron. QE-17, 1861.CrossRefGoogle Scholar
Mandl, A. 1971 Phys. Rev. A3, 251.CrossRefGoogle Scholar
Mangano, J. A., Jacob, J. H., Rokni, M. & Hawryluk, A. 1977 Appl. Phys. Lett. 31, 26.CrossRefGoogle Scholar
Marowsky, G., Tittel, F. K., Wilson, W. L. & Frenkel, E. 1980 Appl. Opt. 19, 138.CrossRefGoogle Scholar
Marowsky, G., Glass, G. P., Tittel, F. K., Hohla, K., Wilson, W. L. & Weber, H. 1982 IEEE J. Quantum Electron. QE-18, 898.CrossRefGoogle Scholar
McDaniel, E. W., Cermak, V., Dalgarno, A., Ferguson, E. E. & Friedman, L. 1970 Ion-Molecule Reactions. Wiley Interscience, New York p 338.Google Scholar
Michels, H. H., Hobbs, R. H. & Wright, L. A. 1979 J. Chem. Phys. 71, 5053.CrossRefGoogle Scholar
Nakano, H. H., Hill, R. M., Lorents, D. C., Huestis, D. L. & McCusker, M. V. 1976 SRI Report No MP-76–99.Google Scholar
Nuckolls, J. H. 1982 Physics Today 35, 9.CrossRefGoogle Scholar
Patterson, E. L., Rice, J. K. & Tisone, G. C. 1980 Appl. Phys. Lett. 36, 188.CrossRefGoogle Scholar
Powell, H. T. (Private Communication).Google Scholar
Quigley, G. P. & Hughes, W. M. 1978 Appl. Phys. Lett. 32, 649.CrossRefGoogle Scholar
Shaw, M. J., O'Neill, F., Edwards, C. B., Nicholas, D. J. & CRaddock, D. 1982 Appl. Phys. B28, 127.Google Scholar
Steunenberg, R. K. & Vogel, R. C. 1956 J. Am. Chem. Soc., 78, 901.CrossRefGoogle Scholar
Trainor, D. W. & Jacob, J. H. 1980 Appl. Phys. Lett. 37, 675.CrossRefGoogle Scholar
Ueda, K., Hara, H., Kanada, S. & Takuma, H. 1982 Jap. Joum. of Appl. Phys. 21, L500.CrossRefGoogle Scholar
Vriens, L. 1965 Physica 31, 395.Google Scholar
Wadehra, J. M. & Bardsley, J. N. 1978 Appl. Phys. Lett. 32, 76.CrossRefGoogle Scholar
Wadt, W. R. & Hay, P. J. 1978 J. Chem. Phys. 68, 3850.CrossRefGoogle Scholar