Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-dksz7 Total loading time: 0.258 Render date: 2021-07-26T14:56:34.366Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH

Published online by Cambridge University Press:  30 March 2012

U. Zastrau
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany Helmholtz Institut Jena, Jena, Germany
T. Burian
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic
J. Chalupsky
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic
T. Döppner
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
T.W.J. Dzelzainis
Affiliation:
School of Mathematics and Physics, Queens University, Belfast, United Kingdom
R.R. Fäustlin
Affiliation:
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
C. Fortmann
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
E. Galtier
Affiliation:
SLAC, National Accelerator Laboratory, Menlo Park, California Sorbonne Universités, Pierre et Marie Curie, LULI, UMR 7605, Paris, France
S.H. Glenzer
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
G. Gregori
Affiliation:
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
L. Juha
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic
H.J. Lee
Affiliation:
SLAC, National Accelerator Laboratory, Menlo Park, California
R.W. Lee
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California SLAC, National Accelerator Laboratory, Menlo Park, California
C.L.S. Lewis
Affiliation:
School of Mathematics and Physics, Queens University, Belfast, United Kingdom
N. Medvedev
Affiliation:
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
B. Nagler
Affiliation:
SLAC, National Accelerator Laboratory, Menlo Park, California
A.J. Nelson
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
D. Riley
Affiliation:
School of Mathematics and Physics, Queens University, Belfast, United Kingdom
F.B. Rosmej
Affiliation:
Sorbonne Universités, Pierre et Marie Curie, LULI, UMR 7605, Paris, France Ecole Polytechnique, Laboratoire pour l'Utilisation des Lasers Intenses, PAPD, Palaiseau, France
S. Toleikis
Affiliation:
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
T. Tschentscher
Affiliation:
European XFEL GmbH, Hamburg, Germany
I. Uschmann
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany Helmholtz Institut Jena, Jena, Germany
S.M. Vinko
Affiliation:
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
J.S. Wark
Affiliation:
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
T. Whitcher
Affiliation:
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
E. Förster
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany Helmholtz Institut Jena, Jena, Germany
Corresponding
E-mail address:

Abstract

We report on experiments aimed at the generation and characterization of solid density plasmas at the free-electron laser FLASH in Hamburg. Aluminum samples were irradiated with XUV pulses at 13.5 nm wavelength (92 eV photon energy). The pulses with duration of a few tens of femtoseconds and pulse energy up to 100 µJ are focused to intensities ranging between 1013 and 1017 W/cm2. We investigate the absorption and temporal evolution of the sample under irradiation by use of XUV and optical spectroscopy. We discuss the origin of saturable absorption, radiative decay, bremsstrahlung and atomic and ionic line emission. Our experimental results are in good agreement with simulations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, W., et al. (2007). Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336.CrossRefGoogle Scholar
Almbladh, C.-O., Morales, A.L., et al. (1989). Theory of auger core-valence-valence processes in simple metals. I. Total yields and core-level lifetime widths. Phys. Rev. B 39, 34893502.CrossRefGoogle ScholarPubMed
Bajt, S., Chapman, H., et al. (2009). Sub-micron focusing of soft X-ray free electron laser beam. SPIE Conf. Ser. 7361.Google Scholar
Bambynek, W., et al. (1972). X-ray fluorescence yields, auger, and Coster-Kronig transition probabilities. Rev. Mod. Phys. 44, 716813.CrossRefGoogle Scholar
Cao, L., Uschmann, I., et al. (2007). Space-time characterization of laser plasma interactions in the warm dense matter regime. Laser Part. Beams 25, 239244.CrossRefGoogle Scholar
Chalupský, J., Juha, L., et al. (2007). Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids. Opt. Exp. 15, 60366043.CrossRefGoogle ScholarPubMed
Chung, H., Chen, M., et al. (2005). Flychk: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Phys. 1, 312.CrossRefGoogle Scholar
Cihelka, J., Juha, L., et al. (2009). Optical emission spectroscopy of various materials irradiated by soft X-ray free-electron laser. Proc. SPIE 7361, 73610P.CrossRefGoogle Scholar
Davidson, R. (2003). Frontiers in High Energy Density Physics: The X-Games of Contemporary Science. New York: Academies Press.Google Scholar
Dufour, G., Mariot, J., et al. (1976). K-LL Auger spectrum of aluminium. Phys. Scripta 13, 370372.CrossRefGoogle Scholar
Dzelzainis, T., Chalupsky, J., et al. (2010). Plasma emission spectroscopy of solids irradiated by intense XUV pulses from a free electron laser. High Energy Density Phys. 6, 109112.CrossRefGoogle Scholar
Fäustlin, R., Zastrau, U., et al. (2010). A compact soft X-ray spectrograph combining high efficiency and resolution. J. Instr. 5, P02004.CrossRefGoogle Scholar
Fortmann, C., Bornath, T., et al. (2009). X-ray Thomson scattering cross-section in strongly correlated plasmas. Laser Part. Beams 27, 311319.CrossRefGoogle Scholar
Fortmann, C., Redmer, R., et al. (2006). Bremsstrahlung vs. Thomson scattering in VUV-FEL plasma experiments. High Energy Density Phys. 2, 57.CrossRefGoogle Scholar
Galtier, E., Rosmej, F., et al. (2011). Decay of crystalline order and equilibration during solid-to-plasma transition induced by 20-fs microfocused 92 eV free electron laser pulses. Phys. Rev. Lett. 106, 164801.CrossRefGoogle ScholarPubMed
Gaunt, J.A. (1930). Continuous absorption. Proc. R. Soc. A 126, 654.CrossRefGoogle Scholar
Glenzer, S. & Redmer, R. (2009). X-ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys. 81, 16251663.CrossRefGoogle Scholar
Griem, H.R. (1997). Principles of Plasma Spectroscopy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Henke, B., et al. (1993). X-ray interactions: Photoabsorption, scattering, transmission, and reflection at e = 50–30000 eV, z = 1–92. At. Data Nuclear Data Tables 54, 181.CrossRefGoogle Scholar
Kaiser, A., Rethfeld, B., et al. (2000). Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses. Phys. Rev. B 61, 1143711450.CrossRefGoogle Scholar
Kaufman, V. & Martin, W. (1991). Wavelengths and energy level classifications for the spectra of aluminum. J. Phys. Chem. Ref. Data 20, 775858.CrossRefGoogle Scholar
Kramers, H.A. (1923). On the theory of X-ray absorption and the continuous X-ray spectrum. Philos. Mag. 46, 836.CrossRefGoogle Scholar
Lee, R.W., et al. (2002). Plasma-based studies with intense X-ray and particle beam sources. Laser Part. Beams 20, 527.CrossRefGoogle Scholar
Lee, R.W., et al. (2003). Finite temperature dense matter studies on next-generation light sources. J. Opt. Soc. Am. B 20, 770.CrossRefGoogle Scholar
Lewis, G., Lipkin, D., et al. (1941). Reversible photochemical processes in rigid media. A study of the phosphorescent state. J. Am. Chem. Soc. 63, 30053018.CrossRefGoogle Scholar
Lin, Z., Zhigilei, V., et al. (2008). Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133.CrossRefGoogle Scholar
Lindl, J., et al. (2004). The physics basis for ignition using indirect-drive targets in the National Ignition Facility. Phys. Plasmas 11, 339491.CrossRefGoogle Scholar
Lochte-Holtgreven, W. (1995). Plasma diagnostics. InPlasma Diagnostics, 135. New York: AIP Press.Google Scholar
Lomonosov, I. (2007). Multi-phase equation of state for aluminum. Laser Part. Beams 25, 567584.CrossRefGoogle Scholar
Lorazo, P., Lewis, L.J., et al. (2006). Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation. Phys. Rev. B 73, 134108.CrossRefGoogle Scholar
MacFarlane, J., et al. (2006). Helios-Cr a 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling. J. Quant. Spectrosc. Radiat. Transf. 99, 381.CrossRefGoogle Scholar
Medvedev, N., Zastrau, U., et al. (2011). Short-time electron dynamics in aluminum exrefd by femtosecond extreme ultraviolet radiation. Phys. Rev. Lett. 107, 165003.CrossRefGoogle ScholarPubMed
Medvedev, N. & Rethfeld, B. (2009). Effective energy gap of semiconductors under irradiation with an ultrashort VUV laser pulse. EPL 88, 55001.CrossRefGoogle Scholar
Nagler, B., Zastrau, U., et al. (2009). Turning solid aluminum transparent by intense soft X-ray photoionization. Nat. Phys. 5, 693696.Google Scholar
Nakano, N., et al. (1984). Development of a flat-field grazing-incidence XUV spectrometer and its application in picosecond XUV spectroscopy. Appl. Opt. 23, 23862392.CrossRefGoogle ScholarPubMed
Nettelmann, N., et al. (2008). Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. Astrophys. J. 683, 1217.CrossRefGoogle Scholar
Recoules, V., Clérouin, J., et al. (2006). Effect of intense laser irradiation on the lattice stability of semiconductors and metals. Phys. Rev. Lett. 96, 055503.CrossRefGoogle ScholarPubMed
Rethfeld, B., Kaiser, A., et al. (2002). Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303.CrossRefGoogle Scholar
Riley, D., Khattak, F., et al. (2007). Spectrally resolved X-ray scatter from laser-shock-driven plasmas. Laser Part. Beams 25, 465469.CrossRefGoogle Scholar
Rosmej, F.B. (2001). A new type of analytical model for complex radiation emission of hollow ions in fusion, laser and heavy-ion-beam-produced plasmas. Europhys. Lett. 55, 472478.CrossRefGoogle Scholar
Rus, B., Mocek, T., et al. (2011). High energy density matter generation using a focused soft-X-ray laser for volumetric heating of thin foils. High Energy Density Phys. 7, 1116.CrossRefGoogle Scholar
Saumon, D., et al. (2000). Modelling pressure-ionization of hydrogen in the context of astrophysics. High Press. Res. 16, 331.CrossRefGoogle Scholar
Siwick, B.J., et al. (2003). An atomic-level view of melting using femtosecond electron diffraction. Sci. 302, 13821385.CrossRefGoogle ScholarPubMed
Tiedtke, K., Azima, A., et al. (2009). The soft X-ray free-electron laser FLASH at DESY: Beamlines, diagnostics and end-stations. New J. Phys. 11, 023029.CrossRefGoogle Scholar
Toleikis, S., Fäustlin, R., et al. (2010). Soft X-ray scattering using FEL radiation for probing near-solid density plasmas at few electron volt temperatures. High Energy Density Phys. 6, 1520.CrossRefGoogle Scholar
Vinko, S. (2010). Creation and Study of Matter in Extreme Conditions by High-intensity Free-electron Laser Radiation. PhD thesis. Oxford: University of Oxford.Google Scholar
Vinko, S., Gregori, G., et al. (2009). Free-free opacity in warm dense aluminum. High Energy Density Phys. 5, 124131.CrossRefGoogle Scholar
Vinko, S., Zastrau, U., et al. (2010). Electronic structure of an XUV photo-generated solid-density aluminum plasma. Phys. Rev. Lett. 104, 225001.CrossRefGoogle Scholar
von Barth, U. & Grossmann, G. (1982). Dynamical effects in X-ray spectra and the final state rule. Phys. Rev. B 25, 51505179.CrossRefGoogle Scholar
Wilks, S., Kruer, W., et al. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Zastrau, U., Fortmann, C., et al. (2008). Bremsstrahlung and line spectroscopy of warm dense aluminum heated by XUV free electron laser. Phys. Rev. E 78, 066406.CrossRefGoogle ScholarPubMed
Zastrau, U., Hilbert, V., et al. (2011). In-situ determination of dispersion and resolving power in simultaneous multiple-angle XUV spectroscopy. J. Instr. 6, P10001.CrossRefGoogle Scholar
Ziaja, B., Weckert, E., et al. (2007). Statistical model of radiation damage within an atomic cluster irradiated by photons from free-electron-laser. Laser Part. Beams 25, 407414.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *