Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-xwjfq Total loading time: 0.503 Render date: 2023-01-27T22:51:01.718Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

X-ray spectroscopy diagnoses of clusters surviving under prepulses of ultra-intense femtosecond laser pulse irradiation

Published online by Cambridge University Press:  18 July 2012

A.Ya. Faenov*
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto, Japan
I.Yu. Skobelev
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
T.A. Pikuz
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto, Japan
S.A. Pikuz Jr.
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
V.E. Fortov
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Y. Fukuda
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto, Japan
Y. Hayashi
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto, Japan
A. Pirozhkov
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto, Japan
H. Kotaki
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto, Japan
T. Shimomura
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto, Japan
H. Kiriyama
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto, Japan
S. Kanazawa
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto, Japan
Y. Kato
Affiliation:
The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka, Japan
J. Colgan
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
J. Abdallah Jr.
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
M. Kando
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto, Japan
*
Address correspondence and reprint requests to: A. Ya Faenov, Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13 bld. 2, Moscow, 125412Russia. E-mail: anatolyf@hotmail.com

Abstract

It is shown that various spectroscopic methods based on measurements of X-ray spectra radiated from cluster targets can be used for estimation of the destruction degree of clusters by laser prepulses. These methods allow insight to be gained regarding the important issue of preservation of the dense cluster core at the moment of the arrival of the main laser pulse. In addition, they can be used for quantitative estimation of the size of the undestroyed parts of the clusters and also for measuring the temperature and density of the preplasmas produced by the laser prepulses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonucci, L., Rousseau, J.P., Jullien, A., Mercier, B., Laude, V. & Cheriaux, G. (2009). 14-fs high temporal quality injector for ultra-high intensity laser. Optics Commun. 282, 13741381.CrossRefGoogle Scholar
Boĭko, V.A., Vinogradov, A.V., Ilyukhin, A.A., Katulin, V.A., Maĭorov, S.A., Nosach, V.Yu., Peregudov, G.V., Petrov, A.L., Pikuz, S.A., Skobelev, I.Yu., Faenov, A.Ya., Chirkov, V.A. & Shilov, K.A. (1981). Self-absorption of x-ray spectral lines in an expanding laser plasma. Sov. J. of Quant. Electron 11, 1317.CrossRefGoogle Scholar
Boldarev, A.S., Gasilov, V.A., Faenov, A.Ya., Fukuda, Y. & Yamakawa, K. (2006). Gas-cluster targets for femtosecond laser interaction: Modeling and optimization. Rev. Sci. Instr. 77, 083112.CrossRefGoogle Scholar
Buersgens, F., Madison, K.W., Symes, D.R., Hartke, R., Osterhoff, J., Grigsby, W., Dyer, G. & Ditmire, T. (2006). Angular distribution of neutrons from deuterated cluster explosions driven by femtosecond laser pulses. Phys. Rev. E 74, 016403.CrossRefGoogle ScholarPubMed
Bychenkov, V.Yu. & Kovalev, V.F. (2011). Relativistic coulomb explosion of spherical microplasma. JETP Letters 94, 97100.CrossRefGoogle Scholar
Chen, L.M., Liu, F., Wang, W.M., Kando, M., Mao, J.Y., Zhang, L., Ma, J.L., Li, Y.T., Bulanov, S.V., Tajima, T., Kato, Y., Sheng, Z.M., Wei, Z.Y. & Zhang, J. (2010). Intense High-Contrast Femtosecond K-Shell X-Ray Source from Laser-Driven Ar Clusters. Phys. Rev. Lett. 104, 215004.CrossRefGoogle ScholarPubMed
Chu, H.-H., Tsai, H.-E., Chou, M.-C., Yang, L.-S., Lin, J.-Y., Lee, C.-H., Wang, J. & Chen, S.-Y. (2005). Collisional excitation soft x-ray laser pumped by optical field ionization in a cluster jet. Phys. Rev. A 71, 061804(R).CrossRefGoogle Scholar
Colgan, J., Abdallah, J. Jr., Faenov, A.Ya., Pikuz, T.A., Skobelev, I.Yu., Fukuda, Y., Hayashi, Y., Pirozhkov, A., Kawase, K., Shimomura, T., Kiriyama, H., Kato, Y., Bulanov, S.V. & Kando, M. (2011). Observation and modeling of high resolution spectral features of the inner-shell X-ray emission produced by 10−10 contrast femtosecond-pulse laser irradiation of argon clusters. High Energy Density Physics 7, 7783.CrossRefGoogle Scholar
Davis, J., Petrov, J.M. & Velikovich, A. (2007). Nonlinear energy absorption of rare gas clusters in intense laser field. Phys. Plasmas 14, 060701.CrossRefGoogle Scholar
Ditmire, T., Tisch, J.W.G., Springate, E., Mason, M.B., Hay, N., Smith, R.A., Marangos, J. & Hutchinson, M.H.R. (1997). High-energy ions produced in explosions of superheated atomic clusters. Nature 386, 5456.CrossRefGoogle Scholar
Ditmire, T., Zweiback, J., Yanovsky, V.P., Cowan, T.E., Hays, G. & Wharton, K.B. (1999). Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489492.CrossRefGoogle Scholar
Dobosz, S., Schmidt, M., Pedrix, M., Meynadier, P., Gobert, O., Normand, D., Faenov, A.Ya., Magunov, A.I., Pikuz, T.A., Skobelev, I.Yu. & Andreev, N.E. (1998). Characteristic features of the X-Ray spectra of a plasma, produced by heating CO2 clusters by intense femtosecond laser pulses with λ = 0.8 and 0.4 µm. JETP Letters 68, 454459.CrossRefGoogle Scholar
Dobosz, S., Schmidt, M., Pedrix, M., Meynadier, P., Gobert, O., Normand, D., Ellert, K., Blenski, T., Faenov, A.Ya., Pikuz, T.A., Skobelev, I.Yu., Magunov, A.I. & Andreev, N.E. (1999). Observation of ions with energy above 100 kev produced by the interaction of a 60-fs laser pulse with clusters. Journ Exp. and Theor. Phys. 88, 11221129..CrossRefGoogle Scholar
Donnelly, T.D., Ditmire, T., Neuman, K., Perry, M.D. & Falcone, R.W. (1996). High-Order Harmonic Generation in Atom Clusters. Phys. Rev. Lett. 76, 24722745.CrossRefGoogle ScholarPubMed
Doumy, G., Quéré, F., Gobert, O., Perdrix, M., Martin, Ph., Audebert, P., Gauthier, J.C., J.- Geindre, J.-P. & Wittmann, T. (2004). Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys. Rev. E 69, 026402.CrossRefGoogle ScholarPubMed
Erk, B., Hoffmann, K., Kandadai, N., Helal, A., Keto, J. & Ditmire, T. (2011). Observation of shells in Coulomb explosions of rare-gas clusters. Phys. Rev. A 83, 043201.CrossRefGoogle Scholar
Faenov, A.Ya., Pikuz, S.A., Erko, A.I., Bryunetkin, B.A., Dyakin, V.M., Ivanenkov, G.V., Mingaleev, A.R., Pikuz, T.A., Romanova, V.M. & Shelkovenko, T.A. (1994). High-performance X-ray spectroscopic devices for plasma microsources investigations. Physica Scripta 50, 333338.CrossRefGoogle Scholar
Faenov, A.Ya., Magunov, A.I., Pikuz, T.A., Skobelev, I.Yu., Giulietti, D., Betti, S., Galimberti, M., Gamucci, A., Giulietti, A., Gizzi, L.A., Labate, L., Levato, T., Tomassini, P., Marques, J.R., Bourgeois, N., Dobosz-Dufrenoy, S., Ceccoti, T., Monot, P., Reau, F., Popoescu, H., D'Oliveira, P., Martin, Ph., Fukuda, Y., Boldarev, A.S., Gasilov, S.V. & Gasilov, V.A. (2008). Non-adiabatic cluster expansion after ultrahsort laser interaction. Laser and Particle Beam 26, 6981.Google Scholar
Faenov, A.Ya., Skobelev, I.Yu., Pikuz, T.A., Fortov, V.E., Boldarev, A.S., Gasilov, V.A., Chen, L.M., Zhang, L., Yan, W.C., Yaun, D.W., Mao, J.Y. & Wang, Z.H. (2011). Diagnostics of the early stage of the heating of clusters by a femtosecond laser pulse from the spectra of Hollow ions. JETP Letters 94, 187193.CrossRefGoogle Scholar
Fazeli, R., Mahdieh, M.H. & Tallents, G.J. (2011). Enhancement of line X-ray emission from iron plasma created by laser irradiation of porous targets. Laser and Particle Beams 29, 193200.CrossRefGoogle Scholar
Fennel, Th., Meiwes-Broer, K.-H., Tiggesbäumker, J., Reinhard, P.-G., Dinh, P.M. & Suraud, E. (2010). Laser-driven nonlinear cluster dynamics. Rev. of Modern Physics 82, 1793.CrossRefGoogle Scholar
Fortov, V.E. & Morfill, G.E., Complex and Dusty Plasmas: From Laboratory to Space (CRC Press) 2010.Google Scholar
Fukuda, Y., Faenov, A.Ya., Pikuz, T., Kando, M., Kotaki, H., Daito, I., Ma, J., Chen, L.M., Homma, T., Kawase, K., Kameshima, T., Kawachi, T., Daido, H., Kimura, T., Tajima, T., Kato, Y. & Bulanov, S.V. (2008). Soft X-ray source for nanostructure imaging using femtosecond -laser-irradiated clusters. Appl. Phys. Lett. 92, 121110.CrossRefGoogle Scholar
Fukuda, Y., Faenov, A.Ya., Tampo, M., Pikuz, T.A., Nakamura, T., Kando, M., Hayashi, Y., Yogo, A., Sakaki, H., Kameshima, T., Pirozhkov, A.S., Ogura, K., Mori, M., Esirkepov, T., Koga, J., Boldarev, A.S., Gasilov, V.A., Magunov, A.I., Kodama, P., Bolton, P., Kato, Y., Tajima, T., Daido, H. & Bulanov, S. (2009). Energy increase in multi-MeV ion acceleration in the interaction of short pulse laser with a cluster-gas target. Phys. Rev. Let. 103, 165002.CrossRefGoogle ScholarPubMed
Gavrilenko, V.P., Faenov, A.Ya., Magunov, A.I., Skobelev, I.Yu., Pikuz, T.A., Kim, K.Y. & Milchberg, H.M. (2006). Observation of modulations in Lyman-alfa profiles of multicharged ions in clusters irradiated by fs laser pulses: Effect of a dynamic electric field. Phys. Rev.A. 73, 013203.CrossRefGoogle Scholar
Grillon, G., Balcou, Ph., Chambaret, J.-P., Hulin, D., Martino, J., Moustaizis, S., Notebaert, L., Pittman, M., Pussieux, Th., Rousse, A., Rousseau, J-Ph., Sebban, S., Sublemontier, O. & Schmidt, M. (2002). Deuterium-Deuterium Fusion Dynamics in Low-Density Molecular-Cluster Jets Irradiated by Intense Ultrafast Laser Pulses. Phys. Rev. Lett. 89, 065005.CrossRefGoogle ScholarPubMed
Hayashi, Y., Pirozhkov, A.S., Kando, M., Fukuda, Y., Faenov, A., Kawase, K., Pikuz, T., Nakamura, T., Kiriyama, H., Okada, H. & Bulanov, S.V. (2011). Efficient generation of Xe K-shell x rays by high-contrast interaction with submicrometer clusters. Optics Letters. 36, 16141616.CrossRefGoogle ScholarPubMed
Higginbotham, A.P., Semonin, O., Bruce, S., Chan, C., Maindi, M., Donnelly, T.D., Maurer, M., Bang, W., Churina, I., Osterholz, J., Kim, I., Bernstein, A.C. & Ditmire, T. (2009). Generation of Mie size microdroplet aerosols with applications in laser-driven fusion experiments. Rev.Sci. Instrum. 80, 063503.CrossRefGoogle ScholarPubMed
Hoffmann, K., Murphy, B., Kandadai, N., Erk, B., Helal, A., Keto, J. & Ditmire, T. (2011). Rare-gas-cluster explosions under irradiation by intense short XUV pulses. Phys. Rev. A 83, 043203.Google Scholar
Irons, F.E. (1976). Radiative transfer across expanding laser-produced plasmas. II. Line intensities and stimulated emission. J. Phys. B: Atom. Molec. Phys. 9, 2737–2345.CrossRefGoogle Scholar
Kim, K.Y., Kumarappan, V., Milchberg, H., Faenov, A.Ya., Magunov, A.I., Pikuz, T.A. & Skobelev, I.Yu. (2006). X-Ray spectroscopy of ~ 1 cm channels produced by self-focusing pulse propagation in elongated cluster jets. Phys. Rev. E 78, 066463.Google Scholar
Kiriyama, H., Mori, M., Nakai, Y., Shimomura, T., Sasao, H., Tanoue, M., Kanazawa, S., Wakai, D., Sasao, F., Okada, H., Daito, I., Suzuki, M., Kondo, S., Kondo, K., Sugiyama, A., Bolton, P.R., Yokoyama, A., Daido, H., Kawanishi, S., Kimura, T. & Tajima, T. (2010a). High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system. Opt. Lett. 35, 1497.CrossRefGoogle Scholar
Kiriyama, H., Michiaki, M., Nakai, Y., Shimomura, T., Sasao, H., Tanaka, M., Ochi, Y., Tanoue, M., Okada, H., Kondo, S., Kanazawa, S., Sagisaka, A., Daito, I., Wakai, D., Sasao, F., Suzuki, M., Kotakai, H., Kondo, K., Sugiyama, A., Bulanov, S., Bolton, P.R., Daido, H., Kawanishi, S., Collier, J.L., Hernandez-Gomez, C., Hooker, C.J., Ertel, K., Kimura, T. & Tajima, T. (2010b). High-spatiotemporal-quality petawatt-class laser system. Applied Optics 49, 21052110.CrossRefGoogle Scholar
Kishimoto, Y., Masaki, T. & Tajima, T. (2002). High energy ions and nuclear fusion in laser–cluster interaction. Phys. of Plasmas 9, 589.CrossRefGoogle Scholar
Kugland, N.L., Neumayer, P., Döppner, T., Chung, H.-K., Constantin, C.G., Girard, F., Glenzer, S.H., Kemp, A. & Niemann, C. (2008a). High contrast Kr gas jet Kα x-ray source for high energy density physics experiments. Rev. Sci. Insturm. 79, 10E917.Google Scholar
Kugland, N.L., Constantin, C.G., Neumayer, P., Chung, H.-K., Collette, A., Dewald, E.L., Froula, D.H., Glenzer, S.H., Kemp, A., Kritcher, A.L., Ross, J.S. & Niemann, C. (2008b). High x-ray conversion efficiency from extended source gas jet targets irradiated by ultra short laser pulses. Appl. Phys. Let. 92, 241504.CrossRefGoogle Scholar
Last, I., Ron, S. & Jortner, J. (2011). Aneutronic H + 11B nuclear fusion driven by Coulomb explosion of hydrogen nanodroplets. Phys. Rev. A. 83, 043202.CrossRefGoogle Scholar
Lu, H.Y., Liu, J.S., Wang, C., Wang, W.T., Zhou, Z.L., Deng, A.H., Xia, C.Q., Xu, Y., Lu, X.M., Jiang, Y.H., Leng, Y.X., Liang, X.Y., Ni, G.Q., Li, R.X. & Xu, Z.Z. (2009). Efficient fusion neutron generation from heteronuclear clusters in intense femtosecond laser fields. Physical Review A 80, 051201(R).CrossRefGoogle Scholar
McPherson, A., Thompson, B.D., Borisov, A.B., Boyer, K. & Rhodes, C.K. (1994). Multiphoton-induced X-ray emission at 4 – 5 keV from Xe atoms with multiple core vacancies. Nature 370, 631634.CrossRefGoogle Scholar
Mishra, G., Holkundkar, A.R. & Gupta, N.K. (2011). Effect of laser pulse time profile on its absorption by argon clusters. Laser and Particle Beams. 29, 315332.CrossRefGoogle Scholar
Rusek, M., Lagadec, H. & Blenski, T. (2000). Cluster explosion in an intense laser pulse: Thomas-Fermi model. Phys. Rev. A 63, 013203.CrossRefGoogle Scholar
Saalmann, U., Siedschlag, Ch. & Rost, J.M. (2006). Mechanisms of cluster ionization in strong laser pulses. J. Phys. B. 39, R39.CrossRefGoogle Scholar
Sakabe, S., Shimizu, S., Hashida, M., Sato, F., Tsuyukushi, T., Nishihara, K., Okihara, S., Kagawa, T., Izawa, Y., Imasaki, K. & Iida, T. (2004). Generation of high-energy protons from the Coulomb explosion of hydrogen clusters by intense femtosecond laser pulses. Phys. Rev.A. 69, 023203.CrossRefGoogle Scholar
Sherrill, M.E., Abdallah, J. Jr., Csanak, G., Dodd, E.S., Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Yamakawa, K., Faenov, A.Ya., Magnov, A.I., Pikuz, T.A. & Skobelev, I.Yu. (2006). Spectroscopic characterization of an ultrashort laser driven Ar cluster target incorporating both Boltzmann and particle-in-cell models. Phys. Rev. E 73, 066404.CrossRefGoogle ScholarPubMed
Skobelev, I.Yu., Faenov, A.Ya., Bryunetkin, B.A., Dyakin, V.M., Pikuz, T.A., Pikuz, S.A., Shelkovenko, T.A., Romanova, V.M. & Mingaleev, A.R. (1995). Investigating the emission properties of plasma structures with X-ray imaging spectroscopy methods. Journ. Exp. and Theor. Phys. 81, 692717.Google Scholar
Skobelev, I.Yu., Faenov, A.Ya., Pikuz, T.A., Pikuz, S.A. Jr., Fortov, V.E., Fukuda, Y., Hayashi, Y., Pirozhkov, A., Kawase, K., Kotaki, H., Shimomura, T., Kiriyama, H., Kato, Y. & Kando, M. (2011). Effects of the Self- Absorption of X-ray Spectral Lines in the Presence of the Laser–Cluster Interaction. JETP Letters 94, 270276.CrossRefGoogle Scholar
Skobelev, I.Yu., Faenov, A.Ya., Pikuz, T.A. & Fortov, V.E. (2012). Hollow ions spectra in high density laser plasma. Physics-Uspekhi 182, 939.Google Scholar
Smirnov, B.M. (2010). Screening of a Charged Particle Field in Rarefied Ionized Gas. Journ. of Exp. and Theor. Phys. 110, 10421054.CrossRefGoogle Scholar
Stenz, C., Bagnoud, V., Blasco, F., Roche, J.R., Salin, F., Faenov, A.Ya., Magunov, A.I., Pikuz, T.A. & Skobelev, I.Yu. (2000). X-ray emission spectra of the plasma, produced by ultrashort laser pulse in cluster targets. Quantum Electronics 30, 721725.CrossRefGoogle Scholar
Taguchi, T., Antonsen, T.A., Palastro, J., Milchberg, H. & Mima, K. (2010). Particle in cell analysis of a laser-cluster interaction including collision and ionization processes. Optics Express 18, 2389.CrossRefGoogle ScholarPubMed
Tajima, T., Kishimoto, Y. & Downer, M.C. (1999). Optical properties of cluster plasma. Phys. of Plasmas 6, 3759.CrossRefGoogle Scholar
Zhang, L., Chen, L.-M., Yuan, D.-W., Yan, W.-C., Wang, Z.-H., Liu, Ch., Shen, Zh.-W., Faenov, A., Pikuz, T., Skobelev, I., Gasilov, V., Boldarev, A., Mao, J.-Y., Li, Y.-T., Dong, Q.-L., Lu, X., Ma, J.-L., Wang, W.-M., Sheng, Zh.-M. & Zhang., J. (2011). Enhanced Kα output of Ar and Kr using size optimized cluster target irradiated by high-contrast laser pulses. Optics Express 19, 2581225822.CrossRefGoogle ScholarPubMed
Zhang, L., Chen, L.-M., Wang, W.-M., Yan, W.-Ch., Yuan, D.-W., Mao, J.-Y., Wang, Zh.-H., Liu, Ch., Shen, Zh.-W., Li, Y.-T., Dong, Q.-L., Lu, X., Ma, J.-L., Faenov, A., Pikuz, T., Sheng, Z.-M. & Zhang, V. (2012). Electron acceleration via high contrast laser interacting with submicron clusters. Appl. Phys. Lett. 100, 014104.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

X-ray spectroscopy diagnoses of clusters surviving under prepulses of ultra-intense femtosecond laser pulse irradiation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

X-ray spectroscopy diagnoses of clusters surviving under prepulses of ultra-intense femtosecond laser pulse irradiation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

X-ray spectroscopy diagnoses of clusters surviving under prepulses of ultra-intense femtosecond laser pulse irradiation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *