Hostname: page-component-7d684dbfc8-v2qlk Total loading time: 0 Render date: 2023-09-27T09:56:57.771Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

The weakened Weibel instability of collimated fast electron beam in nanotube array

Published online by Cambridge University Press:  20 January 2017

L. Liao
School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, People's Republic of China
R. Zhao*
School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, People's Republic of China
Y. Bie
Nuclear and Radiation Safety Center, MEP, Beijing 100082, People's Republic of China
H. Zhang
College of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, People's Republic of China
C. Hu
School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, People's Republic of China
Address correspondence and reprint requests to: R. Zhao, School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, People's Republic of China. E-mail:


The Weibel instability of the collimated MeV fast electron beams in a nanotube array target is researched in this work. It is found that the filamentation of the fast electrons is significantly suppressed. When fast electrons propagate the nanotube array, a strong magnetic field is created near the surface of tubes to obstruct the transverse movement of the fast electrons and bend them into the inner vacuum spaces between the successive tubes. In consequence, the positive feedback loop between the magnetic field perturbation and the electrons density perturbation is broken and the Weibel instability is thus weakened. Furthermore, the calculated results by a hybrid particle-in-cell code have also proven this weakening effect on the Weibel instability. Because of the high-energy density delivered by the MeV electrons, these results indicate some significant applications in the high-energy physics, such as radiography, fast-electron beam focusing, and perhaps fast ignition.

Research Article
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Atzeni, S., M.-t.-V.J., (2003). Inertial Fusion-Beam Plasma Interaction, Hydrodynamic, Dense Plasma Physics. Oxford: Clarendon.Google Scholar
Borghesi, M., Mackinnon, A.J., Bell, A.R., Malka, G., Vickers, C., Willi, O., Davies, J.R., Pukhov, A. & Meyer-ter-Vehn, J. (1999). Observations of collimated ionization channels in aluminum-coated glass targets irradiated by ultraintense laser pulses. Phys. Rev. Lett. 83, 43094312.CrossRefGoogle Scholar
Campbell, R.B., DeGroot, J.S., Mehlhorn, T.A., Welch, D.R. & Oliver, B.V. (2003). Collimation of PetaWatt laser-generated relativistic electron beams propagating through solid matter. Phys. Plasmas 10, 41694172.CrossRefGoogle Scholar
Chatterjee, G., Singh, P.K., Ahmed, S., Robinson, A.P.L., Lad, A.D., Mondal, S., Narayanan, V., Srivastava, I., Koratkar, N., Pasley, J., Sood, A.K. & Kumar, G.R. (2012). Macroscopic transport of mega-ampere electron currents in aligned carbon-nanotube arrays. Phys. Rev. Lett. 108, 235005.CrossRefGoogle Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, J.L., Fell, B., Frackiewicz, A., Hancock, S., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C.J., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2004). Vulcan Petawatt – an ultra-high-intensity interaction facility. Nucl. Fusion 44, S239S246.CrossRefGoogle Scholar
Gibbon, P. (2005). Short Pulse Laser Interactions with Matter: an Introduction. London: College Press.CrossRefGoogle Scholar
Green, J.S., Ovchinnikov, V.M., Evans, R.G., Akli, K.U., Azechi, H., Beg, F.N., Bellei, C., Freeman, R.R., Habara, H., Heathcote, R., Key, M.H., King, J.A., Lancaster, K.L., Lopes, N.C., Ma, T., MacKinnon, A.J., Markey, K., McPhee, A., Najmudin, Z., Nilson, P., Onofrei, R., Stephens, R., Takeda, K., Tanaka, K.A., Theobald, W., Tanimoto, T., Waugh, J., Van Woerkom, L., Woolsey, N.C., Zepf, M., Davies, J.R. & Norreys, P.A. (2008). Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. Phys. Rev. Lett. 100, 015003.CrossRefGoogle ScholarPubMed
Ji, Y.L., Jiang, G., Wu, W.D., Wang, C.Y., Gu, Y.Q. & Tang, Y.J. (2010). Efficient generation and transportation of energetic electrons in a carbon nanotube array target. Appl. Phys. Lett. 96, 041504.CrossRefGoogle Scholar
Kar, S., Robinson, A.P.L., Carroll, D.C., Lundh, O., Markey, K., McKenna, P., Norreys, P. & Zepf, M. (2009). Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields. Phys. Rev. Lett. 102, 055001.CrossRefGoogle ScholarPubMed
Kodama, R., Azechi, H., Fujita, H., Habara, H., Izawa, Y., Jitsuno, T., Jozaki, T., Kitagawa, Y., Krushelnick, K., Matsuoka, T., Mima, K., Miyanaga, N., Nagai, K., Nagatomo, H., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, P., Shigemori, K., Shiraga, H., Sunahara, A., Tanaka, K.A., Tanpo, M., Toyama, Y., Tsubakimoto, K., Yamanaka, T. & Zepf, M. (2004 a). Fast plasma heating in a cone-attached geometry – towards fusion ignition. Nucl. Fusion 44, S276S283.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, Y. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798802.CrossRefGoogle ScholarPubMed
Kodama, R., Sentoku, Y., Chen, Z.L., Kumar, G.R., Hatchett, S.P., Toyama, Y., Cowan, T.E., Freeman, R.R., Fuchs, J., Izawa, Y., Key, M.H., Kitagawa, Y., Kondo, K., Matsuoka, T., Nakamura, H., Nakatsutsumi, M., Norreys, P.A., Norimatsu, T., Snavely, R.A., Stephens, R.B., Tampo, M., Tanaka, K.A. & Yabuuchi, T. (2004 b). Plasma devices to guide and collimate a high density of MeV electrons. Nature 432, 10051008.CrossRefGoogle ScholarPubMed
Lancaster, K.L., Green, J.S., Hey, D.S., Akli, K.U., Davies, J.R., Clarke, R.J., Freeman, R.R., Habara, H., Key, M.H., Kodama, R., Krushelnick, K., Murphy, C.D., Nakatsutsumi, M., Simpson, P., Stephens, R., Stoeckl, C., Yabuuchi, T., Zepf, M. & Norreys, P.A. (2007). Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 × 10(20) W cm(−2) . Phys. Rev. Lett. 98, 125002.CrossRefGoogle Scholar
Liao, L., Wu, W.D., Gu, Y.Q., Zhou, W.M., Wang, C.Y., Fu, Z.B., Yang, X. & Tang, Y.J. (2013). Production of collimated MeV electron beam in carbon nanotube array irradiated by super-intense femtosecond laser. Carbon 65, 2834.CrossRefGoogle Scholar
Liao, L., Wu, W.D., Wang, C.Y., Zhou, M.J., Fu, Z.B. & Tang, Y.J. (2014). The collimation of intense relativistic electron beams generated by ultra-intense femtosecond laser in nanometer-scale solid fiber array. Appl. Phys. Lett. 104, 083520.CrossRefGoogle Scholar
Mishra, S.K., Kaw, P., Das, A., Sengupta, S. & Kumar, G.R. (2014). Stabilization of beam-Weibel instability by equilibrium density ripples. Phys. Plasmas 21, 012108.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H., Mima, K. & Koga, J. (2007). Optimization of cone target geometry for fast ignition. Phys. Plasmas 14, 103105.CrossRefGoogle Scholar
Park, H.S., Chambers, D.M., Chung, H.K., Clarke, R.J., Eagleton, R., Giraldez, E., Goldsack, T., Heathcote, R., Izumi, N., Key, M.H., King, J.A., Koch, J.A., Landen, O.L., Nikroo, A., Patel, P.K., Price, D.F., Remington, B.A., Robey, H.F., Snavely, R.A., Steinman, D.A., Stephens, R.B., Stoeckl, C., Storm, M., Tabak, M., Theobald, W., Town, R.P.J., Wickersham, J.E. & Zhang, B.B. (2006). High-energy K alpha radiography using high-intensity, short-pulse lasers. Phys. Plasmas 13, 056309.CrossRefGoogle Scholar
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Science 264, 917924.CrossRefGoogle Scholar
Robinson, A.P.L., Kingham, R.J., Ridgers, C.P. & Sherlock, M. (2008 a). Effect of transverse density modulations on fast electron transport in dense plasmas. Plasma Phys. Control. Fusion 50, 065019.CrossRefGoogle Scholar
Robinson, A.P.L. & Sherlock, M. (2007). Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition. Phys. Plasmas 14, 083105.CrossRefGoogle Scholar
Robinson, A.P.L., Sherlock, M. & Norreys, P.A. (2008 b). Artificial collimation of fast-electron beams with two laser pulses. Phys. Rev. Lett. 100, 025002.CrossRefGoogle ScholarPubMed
Santos, J.J., Amiranoff, F., Baton, S.D., Gremillet, L., Koenig, M., Martinolli, E., Le Gloahec, M.R., Rousseaux, C., Batani, D., Bernardinello, A., Greison, G. & Hall, T. (2002). Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics. Phys. Rev. Lett. 89, 207213.CrossRefGoogle Scholar
Sentoku, Y., Mima, K., Kojima, S. & Ruhl, H. (2000). Magnetic instability by the relativistic laser pulses in overdense plasmas. Phys. Plasmas 7, 689695.CrossRefGoogle Scholar
Spitzer, L. & Harm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977981.CrossRefGoogle Scholar
Stephens, R.B., Snavely, R.A., Aglitskiy, Y., Amiranoff, F., Andersen, C., Batani, D., Baton, S.D., Cowan, T., Freeman, R.R., Hall, T., Hatchett, S.P., Hill, J.M., Key, M.H., King, J.A., Koch, J.A., Koenig, M., MacKinnon, A.J., Lancaster, K.L., Martinolli, E., Norreys, P., Perelli-Cippo, E., Le Gloahec, M.R., Rousseaux, C., Santos, J.J. & Scianitti, F. (2004). K-alpha fluorescence measurement of relativistic electron transport in the context of fast ignition. Phys. Rev. E 69, 039901.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high-gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Weibel, E.S. (1959). Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 8384.CrossRefGoogle Scholar